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1. INTRODUCTION AND EXECUTIVE SUMMARY

1.1 MAJOR CONCLUSIONS

This project has investigated the feasibility of integrating

several tools for planning Offensive Counter Air (OCA) missions. This

work has proceeded along three tracks. a development of the underlying

theory of hierarchical planning, an analysis of the requirements and

behavior of existing individual aids (both as they stand alone and

within an overall system), and the design of an architecture for combin- I

ing an appropriate family of aids into an integrated tool. The theory

cl hierarchical p]anning provides a conceptual iramewuri,. for integra-

lor, Lhus :r.a!Lg the rauge of possible architectures co thE one hand -

LI:C mrtiv-,tiug many desigr decisions on the other. The data require- I

t:ents. aric. Lchavior cf the aids further linit the range of possible

designs. Our primary motivation has been to identify principles of

hierarchical systems and of hierarchical system design. The design of a

-artjcular system is viewed both as an exemplificatior cf these princi- -

pIes and as z i.seful problem-solving too].

We have found that it is feasible to integrate the aiGs - the Tar-

get Prioritization Aid (TPA), the Knowledge-Based System (KNOBS), and

the Route Planning Aid (RPA) - and thereby produce a valuable integrated

OCA planning tool. In fact. there are a range of such integrated tools

that can be designed, they differ according to the particular existing

kernel aids chosen, as well as along a number of design dimensions -

such as the degree of flexibility in accepting a given aids successor

---
- _
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if and when it is developed.

There ar'e a number of inherent problems that must be solved,

F regardless of which particular architecture is chosen. These

problems/issues arise in two ways. First, there are hardware and

software issues, machine, language, databases, and input/output formats.

Second, there are the assumptions that the given aid makes about the

world; what are the important objects, how to represent those objects,

and how to use those objects (process them) to produce conclusions. It

is apparent that while each aid can be expected to be internally con-

* sistent with respect to these two issues there is no reason to expect

* consistency among the individually developed aids. A great deal of

attention was given to the architectural requirements for the resolution

4 of the inconsistencies that arise when aids are joined. The basic

* requirements include aid-specific interfaces, which mediate the differ-

ences between any two aids, and an overall control regime. which

* presents a unified view of OCA planning to the user.

For the remainder of this report, we will refer to the integrated

tool as the lutegrated Hierarchical OCA Planner, or simply OCAP.

1.2 HISTORICAL OVERVIEW OF PROJECT

We began our study of designing an integrated OCA planning tool

with an analysis of the three aids - TPA KN'OBS, and RPA. We reviewed

the documentation sent to us and began to analyze alternative architec-

*tures for integration. In the first few months of the project, we also

studied OCA planning in general (through visits to Blue Flag and the 9th

Air Force at Shaw AFB). This provided us with a general framework in

I which to view each of the aids.

-2-
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Our study of the aids was then expanded to include the Command and

Control Warfare Strategy Planning Aid (CTA), the Dynamic Air Order-of-

Battle Aggregation Aid (DAGR), and the Duplex Army Radio/Radar Targeting

Aid (DART). We studied each of the aids in detail (through documenta-

tion only), characterizing their data base aspects, inputs and outputs,

and user functions within the overall hierarchy of OCA planning. This

study led us to a more complete understanding of the input-output rela-

tions of the various sets of aids that could be integrated.

After careful analysis of a set of criteria which we defined for

candidate architectures, we narrowed our analysis of the aids to four

candidate groups. (1) DAGR, DART CTA, TPA, (2) TPA, RPA; (3) TPA,

KNOBS, RPA, and (4) DAGR, TPA, KNOBS, RPA. For each of these groups, we

examined their data base and input-output issues, functions of the

architecture, performance measures, intended user inter-model communi-

cation, interface issues, and evolution. After evaluating each of these

against our set of criteria, we decided that the third group above -

TPA, KNOBS, RPA - should be integrated into an integrated hierarchical

OCA planner system (OCAP) for demonstration and evaluation.

V.e then began to design the UCAP in detail. In parallel, we

developed an underlying theory of hierarchical planning. The theory

*rovided us with a framework upon which to build a practical design; the

design led us to ask (and answer) questions about the theory.

Finally our design led us to believe that the OCAP would indeed be

a useful and valuable tool for OCA planners, and we have recommended

that it be developed and re-evaluated.

-3-
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1.3 RECOMENDATIONS

We recommend that the OCAP be built; TPA, KNOBS, and RPA should be

integrated. It is also possible to include DAGR in the set of aids to

be integrated; the advantages and disadvantages of this will be disussed

in Section 5.3. This recommendation is based on three observations.

First, an integrated OCA planning aid that concurrently accounts for all

aspects (levels) of the OCA planning process should improve the quality

of the resulting OCA plans. Second, the integration is feasible.

Third, the technology of hierarchical planning promises to be a very

powerful technique for problem solving. This is true even though the

theory is young. We believe that building the OCAP would provide an

opportunity to continue the elaboration of the theory of hierarchical

system design that we have begun during this project.

We further recommend that the architecture be biased according to

the stability of the aids over time. Thus, we explicitly recognize that

KNOBS is likely at some point to be replaced by TEMPLAR, and that path

planning tools tend to evolve quickly (to take advantage of increased

computer power and to respond to improved capabilities for sensing enemy

zir defenses). The object of this bias is a commitment to stable

integrated hierarchical aids and a concentration of effort in the most

.ong-liveu solutions to architectural problems. In this way, we expect

UCAP itself to be stable and responsive to new individual aids.

0 As a final suggestion, the Air Force shouid begin to define the

operational environment that would support and use OCAP, since the OCAP

functions are not currently performed operationally in a well integrated

manner

-4-
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1.4 OVERVIEW OF REPORT

The report is organized as follows.

We first describe the OCA planning problem in Section 2. This

description includes a discussion of the current environment and shows

that there is a need for some kind of automated tool. We point out the

advantages this kind of aid will have in the OCA planning environment

We then introduce the OCAP system design issues.

Before discussing the OCAP in detail, we must first understand each

of the six decision aids. We give a brief introduction to each of the

aids in Section 3. This section describes the aids function, data

0 bases, inputs, outputs, operation, and hardware/software.

Section 4 describes one of the major problems in integrating any

set of indiviaually developed software tools - data base consistency.

We present a solution to the problem. This solution allows the aids to

evolve and improve without too many changes to the OCAP.

ic. Section 5, we present the theory and preliminary design issues

Lt the OCAP. We first discuss the theory of hierarchical systems. The

Lhtory gives us a framework for the design of an actual hierarchical

planni1g tool. Next, we discuss the major design features of a

hierarchical system. These design issues outline the features we must

consider in designing an actual hierarchical planning tool, namely the

OCAP. Keeping the theory just discussed in mind, we move to practical

issues. We introduce candidate groups of aids which can be integrated

into a pl-nning tool. We evaluate each of them according to a set of

criteria which we defined. Based on this evaluation we are led to

believe that one candidate (namely, TPA, KNOBS, RPA) is best suited for

integration.

-5-
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F inalIly in Section 6 we give a detailed design of this candidate.

system. The design includes the definition of the OCAP s data bases,

functions, user models, and interfaces.

-6



2. PROBLEM DESCRIPTION OVERVIEW; OPERATIONAL AND TECHNICAL

There are two types of problems that we will address in this sec-

* tion. The first category of problems is domain dependent. Because of

the extensive amount of bookkeeping, data gathering, and limited time,

the current OCA planning environment cannot emphasize good planning as

much as it should. An automated decision aid is needed. Once we decide

* we should build this tool, we are faced with the second type of problem:

system design. How do we design a system which is both feasible from

the computer science point of view and also valuable within the

hierarchical planning environment? This section describes these prob-

lems.

2.1 OPERATIONAL OCA PLANNING PROBLEM

Current planning of Tactical Air Force missions, including Offen-

sive Counter Air (OCA) missions, is done in a hierarchical organiza-

tional structure. The overall OCA objective each day is to produce a

plan for the effective and efficient employment of tactical air

resources available for OCA the next day. The planning is based on a

* large number of "small" decisions made at distributed locations. Each

planner is expected to have done his job right and to have coordinated

his efforts with others. Often the rationale for the small decisions is

not subjected to adequate review and assessment, and there is little

* time to analyze and refine the one overall plan.

-7-
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The OCA mission planning that is aided by the three aids we recom-

mend integrating (TPA, KNOBS/TEMPLAR, RPA) is embedded in a much larger

hierarchical planning environment that includes planning for all the

types of tactical missions (OCA, Defensive Counter Air, Air Interdic-

tion, Close Air Support). Figure 2-1 indicates nine levels in the plan-

ning hierarchy of functions that must be accomplished to generate an air

tasking order. The functions within this hierarchy are performed by

personnel in various organizations, not all of which are co-located.

Each organization has its own data base and several of the functions in

Figure 2-1 are performed to various degrees of completion by more than

one organization.

The three aids have overlap in the planning hierarchy indicated in

Figure 2-1. For example, both TPA and KNOBS include some of the tar-

geteering, weaponeering and a number of sortie planning activities. The

three aids taken together cover important aspects of many of the

hierarchical activities such as target nomination, targeteering,

weaponeering, aircraft assignment, and path selection.

The intent of hierarchically structured environments such as the

military planning environment, is that guidance, constraints, and policy

information be transmitted to lower levels and that solutions in line

with that guidance be returned. Unfortunately, it is very easy and not

uncommon for some of the guidance to be lost across the different levels

of planning. There is no systematic process for checking the con-

sistency of decisions with guidance provided nor for checking con-

sistency of the parts of the plan with each other. In an effort to

minimize the amount of guidance and to preserve the high-level priori-

ties, the planning process has tended to be structured in such a way

that flexibility is lost. This has improved plan coherence at the price

of limiting the capability to develop, present, and compare a variety of

employment options and their corresponding rationales.

*-8
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1. Goal

0 Region
0 Enemy Function

2. Apportionment Nomination

Region
, Mission Type
0 Over Time

3. Target Nomination

0 Priorities

e Constraints

4. Targeteering

* Target Component
a Time of Attack
, Terminal Air Defense Suppression
- Target Attrition Level
9 Reattack Time

5. Weaponeering

. Type
* Number

6. Aircraft Types and Number of Sorties Nomination

* Aircraft Penetration Model (Gross)
* Packaging (EW, CAP SAM Suppressiun, Refueling)

7. Wing/Squadron Selection

! Availability
* Posi tion
* Time Over Target

8. Path Selection

* Route Planning (Survival Optimization, Timint. TOT)

9. SAR

Figure 2-I: Planning Hierarchy Levels

-9- . %

, - . " : . ,. .. . - ~ . . . - - -. . .. .

" ,



Because distributed data bases are used and because the entire

planning process takes most of the day, gathering accurate and con-

sistent data is difficult, consumes much time and requires much "bean-

counting" and "bookkeeping." Hence the form of the data does not sup-

port integrated planning either.

In summary, in the current operational environment bookkeeping is

emphasized at the expense of planning.

2.2 SIGNIFICANCE OF PROVIDING AN INTEGRATED SET OF PLANNING AIDS

Major factors in improving tactical mission planning include accu-

rate and common data, analysis and assessment across several levels of

planning, and time. The development and use of an integrated set of

automated planning aids for use at all levels of planning is needed and

is a longer term goal. Initially, a man-machine system developed for

the three primary organizational and functional levels, (i.e., target

nominations aircraft/ordnance assignments, and flight path selections)

should foster major improvements in the OCA mission plans. Its archi-

tecture should readily permit incorporation of aids for all levels of

planning. These improvements include the maintenance of common, more

accurate data bases, global analysis and exploration of alternatives,

and explanation of rationales leading to the resulting OCA mission

* plans.

An appropriate integrated set of planning aids will provide analyt-

0 ical capability as well as free the decision makers from time-consuming 0

"bookkeeping" details. This will allow them to concentrate more on

trade-off issues and developing a "good" plan, rather than just getting

"a" plan out by the deadline time. Thus, expected results include sig-

nificant improvement in the effectiveness of OCA missions and improved

survivability of the OCA air resources assigned. ("Effectiveness"

-10-
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refers not only to the plan for the individual OCA mission but also to

the degree to which the overall OCA goals are being met. This last will -

be likened to measures of value derived from the overall plan and will

lead to procedures that maximize that value.) Attaining the same

increase in our capability to conduct successful OCA operations with the

current OCA planning processes would probably require sizable increases

in numbers of aircraft, personnel, and supplies.

2.3 SYSTEM-DESIGN PROBLEMS

Now that we have briefly described the OCA planning environment

problem and indicated the advantages of designing an integrated set of

planning aids, we discuss the problem of system design. We must design

a man-machine integrated hierarchical planning system which is feasible;

whose value can be demonstrated in the current environment. For both

these reasons it is prudent to choose a small set of aids that ade-

quately span important hierarchical OCA planning functions. This sec-

t;icr discusses these system-dusign problems.

2.3.1 Computer Science Issues

Several computer science issues must be addressed when wL desib,-

the OCAP. The OCAP will include a subset of the six decision aids

recently developed by RADC and shown in Figure 2-2. Probably the most

important computer science issue arises from the fact that each of these

six decision aids was developed more-or-less independently on a machine

and language of the developer's choice. Thus, the aids cannot simply be

transferred to one machine and be expected to "understand" each other.

Interfaces must be designed, inter-model data must be kept consistent,

* ... . ". , , . . . -- . . . . .. .



and an overall order of processing must be defined. All these tasks

must be performed while keeping evolution of the OCAP and its component

systems in mind. We do not want to design a system which will be out-

of-date in a few years.

The above issues are addressed in subsequent sections of this

report with possible solutions and procedures described.

* 2.3.2 Planning Issues

The OCAP we design must fit into the current OCA environment. Not

only must it be a feasible design but it must be a useful one. Thus,

*the system must be hierarchical and address the functions currently per-

* formed by OCA planners. Thus, the interfaces we design to interact

between the aids must be compatible with the aids' place in the hierar-

chy and must perform their tasks in the context of the current status of

the planning process.

These issues constrain us to design a system which consists of only

those aids which perform useful functions for the OCA planner and which

together form a hierarchical planning system. (Other criteria for a

useful integrated system are discussed in Section 5.3) The aids we

recommend to integrate -TPA KNOBS, RPA -address these planning

issues.

-12-
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1. TPA A TARGET PRIORITIZATION AID. DETERMINES BEST
SET OF TARGETS TO ATTACK.

2, KNOBS A KNOWLEDGE-BASED SYSTEM FOR ASSIGNING AIRCRAFT
AND WEAPONS TO A NOMINATED TARGET.

3. RPA A ROUTE PLANNING AID. DETERMINES A MINIMUM

LETHALITY ROUTE TO A TARGET.

4. DAGR AN AID FOR MAINTAINING THE CURRENT AIR ORDER
OR BATTLE.

5. DART AN AID FOR MAINTAINING ENEMY AIR DEFENSE C3 NODES.

5. CTA AN AID OR PLANNING COUNTER-MEASURES AGAINST
ENEMY C CAPABILITIES THAT DEFEND AGAINST
k- RI ENDL, A mT'I IUNS,

Figure 2-2: The Six Decision Aids

-13-
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3. DESCRIPTION OF THE AIDS

This chapter contains descriptions of the six individual existing

aids; TPA, KNOBS, RPA, CTA, DAGR, and DART. These aids comprise the set

of individual existing "kernel" aids considered in designing the OCAP.

Each aid is described in terms of its function, data bases, inputs, out-

puts, operation, hardware and software. (Parts of the descriptive

*. material in each of the following subsections are taken from the Users

Guide and Functional Description documents for the corresponding aid.

0 See References.)

0

-=I
3.1 TARGET PRIORITIZATION AID (TPA)

iij

3.1.1 Function of TPA
Si

TPA assists the Target Nomination Officer within the Combat Opera-

:iunS Inetlligence Division ul a IALC. The aio allocates friendly sor- -4

ties among a set of enemy air bases in order to reduce their sortie gen-

eration rate. TPA uses data base information and input from the user to

calculate costs and benefits for the targets. TPA's primary output is a

list of recommended targets prioritized by their benefit-to-cost ratio.

* S"
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TPA consists Of three modules: (1) Target Nomination, (2) Expert

Assessment, and (3) File Maintenance. The Target Nomination module con-

ducts all of *the planning; the Expert Assessment module allows the user

to review and edit the expert's estimates used to calculate costs and

benefits; and finally, the File Maintenance module allows the user to

review and edit data bases.

3.1.2 Data Bases

* TPA uses two main data bases: the air-base data base and the expert

data bases. These data bases are described below.

0

3.1.2.1 Air-Base Data Base

S

The air-base data base consists of two data sets: the Air Instal-

lation File (Af) and the Air Order of Battle (AOB). The AIF contains

information for both Day 1 and Day 4 of the war.

e The AIF contains the following data items for the current set of 50

Warsaw Pact air bases.

o Air base ID

Oo Location of the air base (longitude and latitude)

o Number of observed targets for each component

o Damage state of each component (there are five states)

-1.--
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I. Aircraft in the Open

2. Maintenance Facilities

3. Aircraft in Shelters

4. Aircraft in Revetments

5. Command Posts

6. Control Sites

7. Launch and Recovery Surfaces

8. Petroleum, Oils and Lubricants

9. Munitions

10. Major Spares.

The AOB data set contains the names of 16 different Warsaw Pact

aircraft and the type and number of each located at each air base.

3.1.2.2 Expert Assessment Data Base

The expert-assessed values and rationale used by TPA are stored in

the Expert Data Base. This data is used to derive estimates of the

costs and benefits associated with attacks on air base targets. The

knowledge of experienced Air Force targeteers is reflected in these

assessments.

TPA has space for six different expert data bases. Currently, only

two data bases are available, but the user is free to create more.

Thus, different experts can tailor the assessments to suit their own

needs.

Each of the six data bases has six data types. TPA uses these data

types to calculate costs and benefits with respect to a prototypical

Warsaw Pact air base. This prototype represents a standard Warsaw Pact

facility with a given number of units for each of the ten components.

2..
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The data types used by the prototype are the following: maximum effect,

effects based on the AIF, effects of attacks over time, friendly sortie

requirements.,enemy aircraft average sortie generation rates, and enemy

aircraft distance parameters.

Maximum effect is the percent reduction of an air base's sortie

generation rate if the component is destroyed. This reduction is based

on a 24-hour period. For example, if the maximum effect of a command

post is 20, then if the command post is destroyed, the air base's sortie

generation rate will be reduced by 20% for 24 hours.

Effects based on AIF are the percentages of maximum effect already

achieved for each damage state. Thus, for a given damage state, this

value represents how much of the maximum effect has been achieved.

The percentage of maximum effect achieved daily after a day's

attack on a component is reflected in the effects of attack over time.

This percentage is measured over 14 days, and thus degrades over that

period.

Friendly sortie requirements are estimates of the number of F-Ill

equivalent sorties that could achieve maximum damage to a component with

a 70 percent probability of success. There are estimates for each of

* the damage levels of each component.

Enemy sortie generation rates estimate the average number of sor-

*ties per day that each of the aircraft can maintain.

Finally, the enemy aircraft distance parameters represent the max-

imum flying distance the sortie generation rate can maintain and the

maximum distance the sorties can fly.



3.1.3 Inputs

In addition to the data bases, TPA requires inputs from the user.

The user enters two types of data. First, he can enter a record of the

attacks flown in the past and those to be flown today. This history-

of -attack data file provides the user with the opportunity to update the

damage states of the air bases, if they have not yet been recorded in

the AIF. Second, the user enters the scenario and conditions for the

4 future. These conditions include the following: (1) weather forecast,

(2) time window of effect, (3) enemy aircraft that must be suppressed,

(4) region the user wants to protect, and (5) the number of friendly

sorties available.

TPA allows the user to review and edit the data bases and target

nomination informp'tion. Thus, by inputting responses to the system

*prompts, the user can edit virtually all of the data TPA uses. For a

more detailed explanation of the many options available, see (Figgins,

Gates, 1983) and (Waslov, 1982). 0

3.1.4 Outputs

TPA provides the user with system-wide outputs and Target Nomina-

* tion outputs. Error messages and copies of screen displays are provided

*throughout each of the system's modes. The Target Nomination outputs

include the tables of allocations of sorties, graphs of effects over

I Lime, and tables which trace various data. Examples of these outputs

* can be found in (Figgins, Gates, 1983) and (Waslov, 1982).



3.1.5 Operation

TPA leads the user through the system by a series of menus and

prompts. After reviewing and editing the expert assessments and air

base files, the user enters the Target Nomination mode. He selects

which day of the war he is interested in - Day I or Day 4 - the expert

assessment file he wants to use, and the type of planning in which he is

interested. He can either edit the current conditions, conduct day-by-

day planning, or conduct overall planning. Overall planning provides a

quick multiple-day solution. Day-by-day planning allows the user to

plan and analyze each day individually.

3.1.6 Hardware/Software

The following describes the hardware and software needed by TPA for

the demonstration version currently running at PAR.

3.1.6.1 Hardware

The current version of TPA uses the following equipment:

o DEC VAX 11/780 under UNIX

o Any type of video or hardcopy terminal - better if capable of

displaying more than 100 char/line, 42 lines/page.

Currently TPA uses a Tektronix 4014 with an attached hardcopy

-19-
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device and a lineprinter. One terminal interface (DZ-1 or

equivalent) is required.

o Recommend use of a Floating Point Accelerator (DEC FP780/FP750)

for the VAX.

3.1.6.2 Software

TPA requires the following software support:

o UNIX APL/1l workspace in double precision format (Berkeley

UNIX 4.1)

o Uses the Purdue University modified version of UNIX APL, •

further enhanced by PAR.

3.2 KNOWLEDGE BASED SYSTEMS (KNOBS)

Parts of this section were taken directly out of KNOBS Architecture

and Tactical Expert Mission Planner (TEMPLAR). See References.

-20
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3.2.1 Function of KNOBS

KNOBS was developed to support the design of individual strike mis-

sions within the air tasking process. Specifically, KNOBS supports

Offensive Counter Air COCA), mission planning. KNOBS has a representa-

tion of a typical OCA mission which the planner fills out with the

details of a particular mission. Its primary goal is consistency

management. It checks the constraints the user has inputted to insure

they can be met, and informs the user of any inconsistencies.

KNOBS also provides planning support and autonomous planning facil-

ities. It suggests alternatives for the resources, ranks the alterna-

tives by their appropriateness, and is able to complete an entire mis-

* sion design, given a few critical components.

3.2.2 Data Bases

The data base KNOBS uses currently contains information about 53

tactical units. These are distributed among eight air bases in Germany

and Great Britain. The data base contains about 700 targets which are

primarily located in East Germany. The speeds and ranges of 18 dif-

* ferent types of aircraft are stored in the data base. It also contains

* information about the kinds of radar associated with several types ofS

Soviet surface-to-air missiles.

The KNOBS data base also contains rules about the tactical doctrine

* for mission planning. KNOBS uses these rules to constrain or suggest-

possible choices of mission parameters.

The KNOBS data base represents a plausible scenario, but is not

4 meant to be accurate. It is not classified.



T

3.2.3 Inputs

The minimum input to KNOBS is the target the planner wants to hit,

the time-over-target, and the value of probability of kill expected

(Pk). If only these inputs are entered, then KNOBS will search its data

bases for candidates for all the other mission parameters, and fill in

the remaining details, if necessary.

The user can also enter the other mission components; defnses,

type of aircraft to be sent, location of those aircraft, ordnance, pos-

sible need for air-to-air refueling, and various call signs and frequen-

cies for communication.

The user is also able to provide inputs in the form of data base

queries. This capability is augmented by the uses of the natural

language interface. This interface can construct small search pro-

cedures based on the user's English input.

3.2.4 Outputs

KNOBS provides output to the user by providing planning support and

autonomous planning facilities. It suggests alternatives, checks con-

straints, and completes entire mission designs. The KNOBS system

explains its behavior to the user by monitoring its deduction mechanisms

and translating a trace of their actions into English. It continually

informs the user when constraints are not met and can conduct a limited

dialogue with the user.

0S

0
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*3.2.5 Operation

KNOBS contains a hierarchy of command environments. At the top of

the hierarchy, KNOBS presents the user with a menu. The user can begin

to plan or replan a mission, delete a mission, or quit. If he chooses

to plan or replan a mission, the system will put him in the mission

instantiation level.

The user has a few options at the mission instantiation level. He

can select a mission item to fill or enter any of four different command

modes.

If he selects an item, the system will prompt for a value. The

user can restrict its allowable values rather than constraining it to a

particular one. KNOBS uses these restrictions to constrain automatic

planning. At any time, the user can enter one of the command modes to

help him fill in items. He can request automatic planning by asking the

system to "FINISH" the plan. KNOBS then prints a trace of its search

for likely candidates.

The command modes the user can enter are control, explanation,

enumeration, and English. If he wants to exit from the current mission, --

ne should enter the control mode. At the explanation mode, he can ask

the system to explain the available options or to explain problems with

an item. If he wants to see a list of the acceptable choices for an

item, the user can enter the enumeration mode. In the English mode, he

can ask questions and enter the rule-editing facility.

-23-
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3.2.6 Hardware/Software

KNOBS runs on a TOPS-20 system using INTERLISP.

3.3 ROUTE PLANNING AID (RPA)

3.3.1 Function of RPA

The Route Planning Aid (RPA) is designed to assist the F-Ill mis-

sion planner to determine a minimum lethality route from friendly airspace

to a specific target. RPA provides the following capabilities:

o Derivation of minimum lethality routes - routes with maximum

probability of survival,

o User input of routes,

o Route evaluation, and

o Interactive iterative planning - the user can repeatedly

modify a route during any given run.

The RPA system consists of three processing components: (1) the

executive, (2) the optimization/evaluation system, and (3) the

knowledge-based system. The executive manages file trasfers between

the other two components and provides a friendly user interface. The

optimization/evaluation component determines minimum lethality routes

and evaluates user-chosen routes with respect to lethality. Finally,
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the knowledge-based system provides the user with explanations and cri-

tiques about various parts of the route. --

3.3.2 Data Bases

RPA uses four major data bases: (1) map, (2) threat, (3) target,

and (4) aircraft. These data bases are described below. O

3.3.2.1 Hap Data Base

The map data base is in the form of DMA data of altitude contours.

RPA uses this terrain information to calculate terrain masking effects.

The terrain data is stored at five fixed altitudes above sea level.

3.3.2.2 Threat Data Base

The threat data base represents the information about the location -.-

and types of threats. Each threat is specified by type and location.

Both fixed and mobile threats can be included.

-25-
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3.3.2.3 Target Data Base

The targets in the scenario are specified in the target data base

by longitude and latitude. The user must enter one such target when he

runs RPA.

3.3.2.4 Aircraft Data Base

The F-llf's minimum turn radius allowable and the maximum climb and

dive rates are stored in the aircraft data base. Note that if any other

type of aircraft is considered, these values will have to be changed.

3.3.3 Inputs

In addition to the tour oata bases, RPA needs additional inputs

from the user. These inputs consist of the mission constraints and

information about the route.

3.3.3.1 Mission Constraints

0 Mission constraints consist of region of interest, time-on-target,

and several mission conditions. The region of interest defines the

boundaries of the map displays that will appear on the graphics termi-

nal. These boundaries are in the form of longitude and latitude coordi-

nates. The user then enters time-on-target, followed by a list of mis-

sion conditions.

-26-
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The mission conditions RPA uses are the following: time of day,

visibility, jamming support, speed, and clearance altitude. The first

three of these affect the threateningness of some of the threats. The

lethality of the threat is increased if the mission is at night, visi-

bility is poor, or there is no jamming support. Speed and clearance

altitude must be entered and are held constant throughout the RPA run.

3.3.3.2 Route Information

In addition to the mission conditions which the user enters at time

of initialization, he also inputs route information during the course of

an RPA run. Of course, he must choose the target. He can also input

his own route, if he is not satisfied with the minimum lethality route.

3.3.4 Outputs

The outputs of the RPA system are the following:

o Intermediate output which another component uses as input,

o Explanation and critiques,

o Displays, and

~.A log of user interaction.

The optimization/evaluation component of RPA produces information

about routes such as probability of survival, distance, altitude, etc.

This intermediate output is passed on to the knowledge-based system to

form explanations and critiques. These explanations provide details to

the user about various parts of the route. The textual critiques accom-

pany the displays which are shown on the color graphics terminal. RPA

-27-



provides displays for terrain, lethality, and threats. Finally, all of

the interaction between the user and the system is stored in a file

* which the user can access.

- 3.3.5 Operation

4 The operation of RPA can be described as a sequence of steps the

* user performs interactively.

First, the user initializes the system by entering all of the mis-

* sion constraints.

Second, the user can receive a threat briefing. He can pose ques-

tions to the system about the particular types of threats in the

scenario. Re is also able to query the system about threats later dur-

ing the run.

Next, the user focuses his attention on the target area. He can

either choose an initial point (UP) or let the system choose one, based

on minimumn lethality.

Then, the user chooses an exit point and re-entry point on the

* friendly side of the FEBA. The system then determines the minimum

-lethality route based on these points. The user is free to enter his

own routes at this point.

* Finally, the user chooses an egress route.0
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3.3.6 Hardware/Softvare

The following description of the hardware and software needed by

RPA pertains only to the demonstration version currently running at PAR

Technology.

3.3.6.1 Hardware

The current version of RPA uses the following equipment:

o DEC VAX 11/780 under VMS

o Two displays devices

- a color graphics display device (currently a Ramtek)

- an alphanumeric device - any device that can display

display ASCII characters and as many lines of text as
possible.

3.3.6.2 Software

The RPA software requires the following software support:

o FORTRAN 77 compiler under VMS

o INTERLISP (current version was developed by SRI and ISI)

Any changes in the current compiler would cause certain LISP

functions to operate incorrectly.

-29-
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3.4 COMMAND AND CONTROL WARFARE STRATEGY PLANNING AID (CTA)

3.4.1 Function of CTA

CTA was designed to assist the TACC personnel in applying

C3CM strategy objectives to practical situations. The aid allows the

user to perform the following functions:

- systematically consider various goals

- apply conditional restraints

- compute cost/benefit values for activities and make

comparisons

- choose best options

- develop a C3 plan

- coordinate the plan implementation

Currently, CTA only considers the denial of command and disruption of

control. Thus, it considers the use of weapons for destruction, jamming

for isolation, and tactical deception.

S

3.4.2 Data Bases

CTA's data base (or "knowledge base") contains information pertain-

ing to the mission of supporting an air base attack.

The following information is stored:

- A formal definition of the C3CM MISSION: in support of an air

-30-
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base attack.

-Division of the mission into 3 planning OBJECTIVES:

1. Deny command

2. Decrease control

3. Condition command perception.

-For each objective, the desired OUTCOMES which could contribute to

meeting it.

There are 8 desired outcomes:

1. Remove Command

2. Isolate Command

3. Overload Control

4. Divert Sensors

5. Navigational Aid Interference

6. False Info to Air Defense Battle Staffs

7. False Info to Parent Command

8. Deceive into Early Interceptor Release

-The names and definitions of the 47 different kinds of ACTIONS

available to cause the desired outcomes.

-For each action, the general KINDS OF ATTACK, the cost of the

actions based on resources, and the outcomes influenced by the

act ion.

The five kinds of attack are:

1. Physical Destruction

2. Communications Jamming

3. Radar Jamming.-

4. Electronic Deception

5. Physical Deception



I...

I.°

- Potential contribution of the objectives, their outcomes and

actions.

- Definitions of any conditions that might affect the assessments.

The reasons for the effects.

- For each action, the recommended coordination activities.

3.4.3 Inputs
Ia

User input includes the following types of information:

- the kinds of attack that are available

- current status of conditions

- selection or rejection of specific actions

- whether he's working on a new or old plan

- whether he wants to save the plan

3.4.4 Outputs

The CTA system features a number of displays available to the

user. The basic displays are as follows:

- a set of actions divided into three categories - Selected,

Rejected, Undecided. This display also shows the total cost.O

and benefit levels for the Selected actions.

-32-
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-the current status of several intermediate goals and the

degree to which the could be achieved if all Undecided actions were

Selected.

- the impact of the current plan if a given action is selected

or not.

- prioritized actions based on the difference in value caused by

including or excluding each action from the plan.

- names of conditions and possible settings. This display

highlights the current value of the conditions.

A number of textual outputs of the system are also available.

These include explanations of action, conditions, goals, effects,

impacts, and conditions.

3.4.5 Operation]

CTA leads the user through the system through a series of menus *-

and function keys. A main control menu is presented to the series at

the start of any given run. This menu presents ten options. The major

modes of operation are as follows:

1. Review/Change Plan.

In this mode, the user can move actions from one

category (Rejected, Undecided, Selected) to another. He can

ask the aid to prioritize actions, and ask for explanations.

-33-



2. Plan by Objectives.

* In the Plan-by-Objectives made, the aid chooses

objectives from each category which maximizes the impact on

the overall benefit.

3. Plan by Priority.

This mode is the most automatic. The user specifies the

number of actions he wants to add to the plan. The aidK selects a high-priority group of that size from the

Undecided category and moves it to Selected.

3.4.6 Hardware/Software

* 3.4.6.1 Hardware

The developmental version of CTA runs on an IBM 4331 Group II. The

on an IBM 3279 terminal, which has twelve programmable function keys.

CIA can run on other terminals, provided some routines are rewritten to

* . substitute other keys for the programmable function keys. The graphical

- capabilities of the IBM 3279 are not used.

06

-34-

0%



-..- -

3.4.6.2 Software

A subsidiary operating system called CMS under the VM/FT operating

system of the IBM 4331 is used for CTA. CTA is written in VS APL, ver-

sion 3.1.

3.5 DYNAMIC AIR ORDER OF BATTLE (DAGR)

3.5.1 Function of IAGR

DAGR supports the Air Order of Battle (AOB) analyst in validating 0

reports, recognizing redeployment of aircraft, and associating destroyed

aircraft with bases of origin. Beginning with a baseline AOB data base,

DAGR processes incoming intelligent reports, classifies them, checks for

inconsistencies, and updates the data base to reflect the information. !

Currently, DAGR processes two types of reports - Kill Reports (KILLREPs)

and Movement Summary Reports (MSRs).

The user is able to interact with DAGR at two places. First, the

user is able to correct any errors in the intelligence reports. Second,

DAGR recommends changes to the AOB but will not implement them without

getting the user's approval. The user is able to examine any informa-

tion in the system in order to make his judgment. -
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3.5.2 Data Bases

DAGR uses three data bases - two dynamic and one static.

One dynamic data base contains the hypothesis structure which is a

collection of "units" containing data about an object. For example,

there is a unit which records information about a reported kill. All

information about the kill is stored in a record with a unique identif-

ier generated by DAGR.

Information about the air bases being monitored is stored in the

other dynamic data base. DAGR keeps track of 28 airfields. This file

makes up the AOB. This information is continually updated on the basis

of the KILLREPs and MSRs.

The static data base contains information on the aircraft. The

following information is stored:

- Type

- Model

- Role

- Combat radius

- Low altitude speed

- Max speed

- Service ceiling

- Soviet aircraft designation

- Two letter abbreviation of aircraft used internally

DiAiCi L,.sL.b t[s, iniormatoln Lu check the aLcuracy and consistency o

incoming reports.
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3.5.3 Input

Two types of input are required to the system. The user must

correct faulty information or tell the system to disregard it. Also,

the user must approve or disapprove DAGR's update recommendations to the

AOB.

If the user wants to correct faulty information, he must enter the

correction in exactly the same format DAGR uses internally. If the user

makes any serious mistakes in his corrections, they will be noticed by

DAGR, and the user will be asked to fix the information again.

When DAGR recommends an AOB change, it informs the user of the

change and gives him four options. The user can (1) accept the sugges-

tion, (2) reject it, (3) ask to see evidence for the change, or (4) ask

to see possible alternatives.

3.5.4 Output
S

When running DAGR, the user will be able to look at three different

displays - (I) an alphanumeric display of incoming messages, (2) an

alphanumeric display of AOB changes and other system output, and (3) a

graphical display of the current situation. The incoming messages are

simply the KILLREPs and MSRs. The second alphanumeric display contains

;A6R' s suggestions Lo the user and all prompts and explanations Lt

changes. The graphical display is a map of the 28 airfields and tracks

of groups of aircrafts and kills.
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3.5.5 Operation

The operation of DAGR is simple. The incoming intelligence reports

are displayed as described above. Unusable reports are brought to the

user's attention and the user can correct it if he wishes. DAGR

processes the messages, and when it determines a change should be made

to the AOB, it informs the user. The user can respond as described in

Section 3.5.3.

3.5.6 Hardware/Software

3.5.6.1 Hardware

DAGR runs on a DEC-20, using three terminals. It needs a hardcopy

device (such as an Anderson-Jacobsen), an ASCII video-display terminal

(such as a Datamedia 2500, DEC VTI00), and a Tektronix 4014 with

extended graphics.

O SI

3.5.6.2 Software

DAGR is written in INTERLISP-10 and requires the standard INTERLISP

run-time environment.
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3.6 DUPLEX ARMY RADIO/RADAR TARGETING AID (DART)

3.6.1 Function of DART

DART assists the C
3CM analyst by maintaining an up-to-the-minute C

3

Order of Battle File. The user can examine incoming messages from the

Direct Support Unit (DSU), get advice on the message's meaning, and

update the C3 OB data base. These incoming messages contain information

about C3 nodes - some communications signal, time of intercept, approxi-

mate location, and nature of the message's source. The C3 OB data base

will be updated automatically by DART if the user approves of the

system's advice. Otherwise, the user can update it himself.

3.6.2 Data Bases

Information on the current C3 nodes is stored in the single data

base maintained by DAGR - the C Node Model. The information includes

the following:

- a certainty factor indicating how sure the analyst is that the node

actually eXists

- the semi-major axis of the error ellipse associated with the loca-

tion

- the names of any sensed ELINT messages associated with the location.
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3.6.3 Input

All the -user input to the system is in the form of responses to

system prompts (except for initialization commands). The user can

choose from seven options from the executive command menu:4

1. Process next message

2. Get next message

K3. Get advice about this message

4. Update model

5. Update display

6. Retrieve last message

7. Quit

These are described in Section 3.6.5.

3.6.4 Output

All system output is in response to user's queries. The system

will display messages, explain advice ab~out messages, output results of

* updating the miodel and update the color graphical displays.

3.6.5 Operation

After initializing the system, the user will be shown the Executive

* Command menu. This menu is the main contact between the user and the

* system. The options available to him were listed in Section 3.6.3.

The first option, "Process Next Mebsage," is the most common. if

* chosen, this option prints the next message at the bottom of the screen

and fills the rest of the screen with advice. The user can get more
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information by responding to the "Explain Advice" prompt. He is also

able to examine other hypotheses.

The second option, "Get Next Message," simply retrieves the next

message in the queue and displays it. To get advice about it, he must

choose the third option "Get Advice About This Message."

The fourth option is to "Update the Model." The user can:

-automatically create a C 3Node, or

create a node himself.

- delete a node.

F- automatically update a node, or

update the node himself.

- find all nodes co-located with the node described in the current message.

- list all Cnodes of a particular type.

- quit.

The fifth option allows the user to update the graphical displays.
3Through this option, the user can display C nodes and examine several

useful pieces of information graphically.

The sixth option allows the user to "Retrieve Last Message" if he

has skipped it. Finally, the last option is simply to quit and to stop

DART execution.

3.6.6 Hardware/Software4



3.6.6.1 Hardware

DART currently runs on a VAX 11/780 with a Floating Point Accelera-

tor (FP780).

The terminal requirements consist of a Gould/DeAnza IP8500 display

terminal (for output) with five memory boards. (DART needs three.) DARTI

makes use of the alphanumeric overlay capability of the IP8500. Any CRT

terminal with screen-oriented cursor control capabilities will suffice

foi input.

3.6.6.2 Software

DART was written in Pascal and C. Although it was developed under

the UNIX operating system, it is not UNIX-dependent.

-41
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4. DATA BASE CONSISTENCY

When integrating independently developed software tools, one

immediately faces the problem of data base consistency. Although there

is some overlap between the data bases of some of the aids, the overlap

is not nearly enough, especially within the particular subsets of aids

most appropriate to integrate.

Each of the six OCA planning aids was developed on a machine and

using a language of the developer's choice. Specifically, as noted in

the previous section, TPA was developed on a VAX 11/780 (UNIX) using

APL; KNOBS runs on a DEC-20 (TOPS-20) using INTERLISP; RPA runs on a VAX

11/780 (VMS) in FORTRAN; CTA uses APL on an IBM 4331; DAGR was developed 0

on a DEC-20 in INTERLISP 10; and DART was written in Pascal and C on a

VAX 11/780. These hardware and software differences cause problems when

trying to ensure consistency.

Consider, for example, the subset including DAGR and TPA. Both

need to access the Air Order of Battle (AOB) file, but each aid

currently accesses its own version of it. DAGR's AOB data base is in

the form of INTERLISP record declarations. TPA uses itemized lists of

data for each air base and accesses these lists using the APL language.

UAGR b maIiL Zunlctivli is to update the AOB file. To be useful, TPA must

access the most up-to-date version. Thus, these data bases must be kept

separate but up-to-date. Thus, consistency must be maintained both

across data base formats and over time. There must be some level of con-

sistency management to reflect DAGR's updates to the AOB when TPA needs

to access it.
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It is important to note that the safest way to assure that each aid

will use consistent information is to modify each of the aid's software

so that each-could access the same data base. But this option requires

extensive rewriting of the existing programs. We consider this option

undesirable at this time.

Several more practical options are available to ensure data base

consistency. In fact, there are several levels of data base consistency

* that can be incorporated into the aids. Each level requires using a

Consistency Manager. Consistency management in general is described

next, followed by a description of the levels of integration possible.

4.1 CONS ISTENCY MANAGEMENT

We define consistency management as a two-step process used to

ensure data base consistency across all the aids' data bases.

Figure 4-I and 4-2 illustrate this two-level process. In the first

* level (Figure 4-1), the humran first defines the scenario context which

is fed into the "Consistency Rule Builder" to build a set of consistency

rules. The Consistency Rule Builder is a necessary tool because dif-

ferent scenario contexts imply different interpretations of particular

concepts of consistency. Thus, a different set of rules is needed for

different scenario settings. For example, the user needs to define such

contexts as the location of the scenario (e.g., Middle East, Eastern

Europe), type of war, level of war, etc. Weather is different when

* applied to the Middle East than when referring to Eastern Europe. A

* rule which maps "bad weather" used in one data base to "poor visibility"

used in another would be different for these two locations. Type and

level of war also require different rules depending on their particular

o contexts. Permissible weapons, for example, may vary from context to

context.
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Figure 4-2: Consistency Management -Consistency Checking (2nd Level)
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Some data pertaining to the scenario context will be fixed (such as

location) throughout the human's use of the aid. Thus, he will enter

this data only once, before using the integrated aid. This data will

map into a set of fixed rules. Other types of data may vary from one

set of runs to another (such as level of war). Thus, the user will have

to enter this data as it changes to produce what we term"vral

rules."

The Consistency Rule Builder would know the format of each data

base and the representation of each data item to the various aids. The

builder would develop a set of rules that map the representation of each

data base item onto the representation of similar data in the other data

bases. For example, one set of consistency rules would exist for

41 weather. It might map the "W" used in TPA to represent bad weather onto

the "bad weather=true" value for KNOBS and the "P" for poor visibility

* used in R.PA. Similar functions would exist for time of day, number of

friendly sorties, etc. Of course, the data used by only one aid, such

as the threat information RPA uses, would not need to be modeled by the

Rule Builder.

The second level of the consistency process is depicted in Figure

4-2. This level defines what happens during each individual run. At

the starL of each run, the user supplies the base case data to the data

bases ot the integrated OCA tool. Base case data refers to the data

particular to a given run. For example, the user would enter the par-

4ticular targets of interest, sorties available, etc. Then, the data

* used by more than one aid (inter-model data) is passed from the specific

data bases to the "Consistency Manager." The Consistency Manager, using

the consistency rules developed above, would periodically check that

* data across all data bases is consistent. Probably, the Manager will

* take the most recent data as the "truth" and make all inconsistent data

match that. Any inconsistencies which the Manager cannot resolve, would

probably be brought to the user's attention. Consistent data is then

* collected to form the scenario data used by the integrated OCA planning6

system.
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, 4.2 LEVELS OF CONSISTENCY MANAGEMENT

There are different levels of complexity at which we could design

the Consistency Manager. The Manager could be human-aided or automatic.

It could be intelligent enough to recognize when enough changes in one

data base require re-running a specific aid. These levels are described

next.

4.2.1 Human-Aided Consistency Manager

The first, most basic level of consistency management that can be

designed is one which checks the consistency of data across data bases

and simply informs the user of any differences it finds. Thus, in the

DAGR-TPA example above, a simple Consistency Manager would determine

that TPA's AOB file was different than DAGR's. The Manager would then

inform the user. It would then be up to the user to resolve the differ-

ences (most likely by updating TPA's data base to match DAGR's).

This Consistency Manager is the most basic because it leaves all

decisions up to the user and does not do any internal updating by

itself. Although this Manager is the safest, due to the constant

interaction with the human, it can also become cunibersome. Certainlyi'. .

if the data item, such as "weather" had different values in two data

bases, a human would be required to resolve it. But, in the DAGR-TPA

example, because DAGR's main function is to update the AOB file, the

Consistency Manager would frequently find mismatches between DAGRs data

base and TPA's. It would be inefficient for the user to be required to

update all of TPAs data base manually. Some degree of automated updat-

ing should be iicorporated in the Consistency Manager.
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4.2.2 Automated Consistency Manager

An automated consistency Manager would notice differences in data

bases and resolve them according to some predetermined set of rules.

One such rule would be, referring to the DAGR-TPA example again, to

automatically update TPA's data base to reflect changes in DAGR's. It

is clear, however, that many decisions would still require human

interaction. Thus, some inconsistencies would still be brought to the

user's attention to correct.

0

4.2.3 Intelligent Consistency Manager

Taking the level of complexity one step further, a very sophisti-

cated Consistency Manager could be intelligent enough to recognize when

specific aids should be run again and inform the user. If DAGR's data

base changed significantly, this complex manager woula not only realize

that TPA's data base must be updated but that TPA actually should be run

again.

This Manager is more complex than the others because it needs to

recognize not only new information in a data base, but when that infor-- -

nation is significant enough to merit re-planning. For example, the

Manager might recognize when a "significant build-up" of enemy forces

occurred to merit re-running TPA. The intelligent manager would still

bring some data base inconsistencies to the user's attention if it could ....

not resolve them itself.
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4.3 RECOHMENDATIONS/SUmHARY

Maintaining separate data bases and building a Rule Builder and

Consistency Manager requires no modifications to the existing software

and allows the aids to access their own data bases in their current for-

mats. New software must be developed, however, to build the Consistency

Rule Builder and Manager. We believe this task to be a simpler and more

manageable one than modifying the current aids. It also allows other

aids to replace the current ones eventually regardless of the new aids'

language or data base format. Evolution of the integrated aids is an

important consideration. If an aid is replaced, the only change neces-

sary to make the data bases consistent is the modification of the Con-

sistency Rule Builder and Manager.

It should be noted at this point that consistency management is a

long-term goal of the design of an integrated system. A first cut at - "

maintaining consistency would be the human-aided Consistency Manager.

This level still requires that consistency rules be built for the

current scenario. To make this even simpler, possibly the human could

define his own set of rules and manually enter them into the Consistency

Manager. As the system advances, the Rule Builder can be developed to

define the set of rules automatically.

For the remainder of this report, we will assume that the data

bases are fully consistent; that is, one of the above options will be

implemented to resolve any inconsistencies. The set of consistent data

kii O LLrcd .;s the "ceI:ario" tor a ivefn run o1 Lhe integrated OCA

system.

5
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5. HIERARCHICAL SYSTEMS: THEORY AND DESIGN

5.1 A GENERALIZED THEORY OF HIERARCHICAL SYSTEMS

o S

5.1.1 The Need for a Theory of Design of Hierarchical Systems

One of the goals of this project has been to determine the extent

to which the concept of hierarchically structured information helps to

nmanage the OCA mission planning process. The kernel aids themselves are

obviously pieces of some 'implied' hierarchical scheme. Yet it has been

an ongoing task to identify just what that scheme might be.

We have been motivated to produce an integrated planning system.

In the process, we have been led to explore not only connectivity, both

necessary and desirable, of the given aids, but also the underlying

principles of hierarchies that are required to ground each system-

" building decision. The intent of this section is to formulate the prin-

ciples that we've identified into a rudimentary theory. Later we will . .

use this theory as a context within which system-building factors are

understood and system-building decisions are made.
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The concept of "hierarchy" can be applied both to software systems

ir used by humans and to human organizations. In both senses the underly-

* ing *'hierarch-icalness" seems to arise from the manner in which informa-

tion is controlled, processed, and exchanged. This is not to say that

organizational hierarchies can be mapped directly onto computational

hierarchies. In fact, it is a major theme of this report and the goal

of this chapter to make a distinction between the two and then to build

* a theory to support the design of hierarchical systems. The next sec-

tion explains the distinction, first informally and then from a somewhat

formal (computer-science) point of view. Section 5.1.3 then introduces

the basic concepts of hierarchical system design, as we perceive them.

5.1.2 Organizational vs. Computational Hierarchies

It is common to think of a hierarchy as an ordered chain of

entities/processes, or perhaps as a tree of processes/events. Each node

in the chain tends to speak Only to its 'superior and successor'

j nodes. In hum~an organizations this often makes sense -privates rarely

need to communicate with generals directly. however, this view of

hierarchicalness is too rigid when our goal is to build a tool/system to

support the organization and its planning. The private occasionally has

* a better picture of something that is of interest to the general; simi-

larly (and far from occasionally) a low-level software tool may discover

* something that is important to the functioning of a tool designed for a

very different part of the hierarchy of tasks. It is desirable for the

0 low-level tool to be able to communicate its result directly and in a

* suitable format to all nodes that would be interested in that result,

r.ather than 'up' through intermediate levels. Thus we make the observa-

tion that for integrated software suites it makes sense to establish

0 lines of communication across many levels.
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For example, the route-planning tool could determine that a partic-

ular target demands far too many resources, and hence is labeled "inac-

cessible." We'd like to provide a mechanism whereby the target priori-

tizer and the resource allocator and all other tools would suspend

interest in that target until such time as it became accessible. In the

best case, the route planner could form and in particular communicate

this judgement to the rest of the system before other nodes spent much

or any time on it. Note that this communication, if effected, would

enhance the overall efficiency of the system (by minimizing excess plan-

ning or replanning at other nodes). In turn, the quality of the plans

should increase due to the longer planning time available for the

remaining targets; hence resource utilization should improve. (This

example is motivated by the fact that targets have been chosen by

planners in real-world conflicts and resources have been allocated, only

to find that the target is rejected at the wing level. Often it will be

too late to replan well using the resources thereby made available.)

We are now ready to state the distinction between organizational

and computational hierarchies in a crisp way: Hierarchical organiza-

tions pass strong control rules down through the echelons of command,

while leaving a relatively larger portion of the local management of

tasks to occur without too much supervision. This is reasonable since

the local agents are human/intelligent. In contrast, hierarchical

software systems inherit the rigid task structure that is inherent in

computer programs; many of the tasks or tools cannot under any cir-

cumstances be construed as intelligent. The result for software hierar- I

chies is that a great deal of local supervision is required to ensure

teamwork while global supervision has to be very flexible to account for

the desires of many different users. Thus when we seek to define a

theory of software hierarchies we will claim that what we are really

after is a new set of principles of communication.

2I
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5.1.3 A Theory of Design of Hierarchical Software Systems

With the previous introduction and distinction as our starting

point, we observe that hierarchically structured information is charac-

terized along three dimensions. First, there is a dimension of ordinal-

ity: hierarchical information is arranged in a spectrum that is marked

at one extreme by specific instances and at the other by general con-

cepts. Any given 'node' along this dimension could represent a single

datum or, more generally, a subsystem that is responsible for a given

task. The second dimension is the scope of a given part of the overall

system. This can be taken as a representation of the size and nature of

the task at one of the nodes just mentioned. Finally, there is the con-

nectivity of the system. If we again refer to the use of nodes in the

system, then connectivity is the RELATION between any pair of nodes.

The connectivity of the system is the set of all node-to-node connec-

tivity relations. Connectivity refers not only to the links between

nodes but also to the communication that is permitted over that channel.

C The decisions regarding the ordering and the scope of the nodes will S

often be either natural or subject to a number of equivalent choices -

choices which do not materially affect the behavior of the system. It

is tne commitMexIts to particular connectivity relations (channels of

0 communication) that will serve most to specify the system's design and

resulting behavior.

The concepts of ordinality, scope, and connectivity as we have

* aefined them are meant to generalize chains and simple trees to more S

complicated structures - essentially, graph-like networks. In particu-

lar, it should now be clear that ordinality really denotes the position

of a node (a node is any task-oriented structure) in a network of other
S

* nodes. In the limit, ordinality is a relation that is specified by the -

structure of the graph. (Most systems will tend to be organized along

the lines of general principles proceeding to specific instances, and so

the ordinality of the graph can still be usefully thought of in terms of

* the idea of the "spectrum".) The scope of a node is the simplest aspect •

of the graph/network; it is just the task that is performed at the node.
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In one sense, this concept arises simply because the tasks must be

characterized. But the notion of "scope" has the virtue that it frees

the designer-from a rigid view of the tasks to be performed. Hence we

could speak about the evolution of aids (or a decision to use only part

of the capabilities of an aid) as an instance of "variable scoping".

Finally, the concept of connectivity frees us from simplistic views of

iput-output relations (such as 'mapping' the output of one system onto

the input of another system). For example, if the human planner is

using OCAP then the man-machine interface can be characterized as a con-

nection between a node or nodes in the system and an external node -the

display device (or even between OCAP and the human). Thus connectivity

can subsume man-machine interfaces within the hierarchical theory.

Once we have accepted this generalization we realize that we get a

big conceptual bonus for free: we have a framework in which it makes

sense to give each tool (each node) a high degree of autonomy and thus

view each of the nodes as a sort of expert. In other words, we have not

only 'outgrown' the chain-like structure of conventional hierarchies but

*also the chain-like order of processing. The route-planning example was

meant to suggest this possibility by having the route planning occur

early enough that higher-level but essentially independent planning

could profit from the information (as the TACC commander was not able to

When the information had to pass down to the wing and then back LIP the

line of command). Independence is obviously the key determinant of the

degree of autonomy of a node. Available processing tools and processing

power are also important considerations.

There are two major consequences when we build a hierarchical sys-

tern with autonomous agents. First, it is possible to decentralize the

planning process. Since our problem contains different aids on dif-

* ferent machines and written in different languages, this view may prove

to be very valuable. Second, different architectures are suggested by

message-passing graph-like networks of experts than are suggested by

nested chains of tools. In particular, the standard notion of a linear

control flow that supports a routine calling sequence would be replaced

-55-



by a blackboard system (or set of such) that manages multiple simultane-

ous processes and the inter-nodal communications.

This concludes our generalization of the standard notion of

hierarchical systems. We observe that standard chain-like hierarchies

are both a valuable subset of the generalized version just presented and

a likely developmental path for some systems that will eventually live

in the richer environment just described. If the goal system is essen-

tially chain-like but uses a few extra links, then it would be natural

to follow a path of first establishing the basic chain. However, if the

goal system is intended to be decentralized, exist in a blackboard

framework, or have a high degree of inter-nodal communication, then it

makes more sense to begin development in this direction. We believe the

latter to be the case for OCAP; this means that it will take longer to

produce initial system behavior, but that the eventual system will be

much more powerful.

The next section, 5.2, integrates these ideas with other factors

that must be addressed to produce an overall design concept - such as

database issues, users, the problem of evolving aids, and man-machine

interface requirements. The broad view of communication amongst nodes

just presented forms the underlying context within which the other

issues are explored and interpreted. Then in section 5.3 we propose

candioate groups of aids and note some of the aspects of the aids that

suggest communication links be established. Section 6 continues this

process for one of the groups of aids (TPA, KNOBS, RPA) and extends it

into a system design.

-56- i



- 5.2 DESIGN FEATURES FOR HIERARCHICAL SYSTEMS

5.2.1 Introduction to Design Issues

There are a number of issues that must be faced by designers of

4 hierarchical planning systems. Among these are database issues, the

functions to be performed, the basic frame of reference of the planner

(we will call this his mode) that is using OCAP, the presence of inter-

faces between aids, a realm of user-oriented issues (from access to

man-machine considerations), and in our case flexibility with respect to

- evolution of tools. A particular design arises from the nature of the

tools themselves and the commitments the designer makes to each of these

issues.

In the following sections we will discuss each of these issues.

*The theory of hierarchical systems, presented in the previous section,

is meant to be a foundat ion w~ithin whjicV each of these issues can be

4 talked about and characterized. As such we plan to use the notions of

ordinality (position in the hierarchy), scope (description of the task

performed at the node), and connectivity (description of the form and

* permissible content communicated between nodes). It is our hope that

this will result in a uniform treatment of each of the above issues. We

- also hope that this discussion will support a deeper understanding of

* hierarchical systems.

A final note about this section - the discussions that follow ofS

each of the issues, when taken together, are intended to bridge the gap

between the theory and the design. Hence in Sections 5.3 and 6 we will

* make reference to the theory but our primary emphasis will be on the

tools themselves. Thus we will describe a design from the point of view

of the details of the aids and not as elements of a network founded on
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certain communication relations. We have further tried to smooth the

transition from theory to practice by exactly matching each subsection

in this section to a corresponding subsection in section 6.

5.2.2 Data Base Design ~

In this section we will review some of the salient points of

chapters 3 and 4. Our goal will then be to abstract some of the issues;

some will turn out to resemble issues that the hierarchical theory

addresses. We will thus sketch a data base theory that is analogous to

I the hierarchical theory (with the hope that a data base so structured

* might better support a hierarchical system).

In chapter 3 we described the data bases used by each aid. We

noted several different languages, the differing formats adopted

(boolean variables, record-structures, real numbers, etc.), and the

machine and/or system that the data base resides on. At the level of

Lhe individual aid, we are entitled to think of the data base as having

a sort of physical integrity - each aid has its data base, or system of

*such, and that data base is a unit. However, as soon as we began to

look across the different data bases (chapter 4) we found that we cannot

think of the data bases as inviolable units.

We observed two types of differences amongst the aids' data bases.

*The first type retains the physical character; machine X versus machine

* Y, records on X written in C versus frames on Y written in LISP. The

* second (non-physical) type of difference is the CONTENT, the meaning, of

the data base entries. In chapter 4 we addressed the need for a mechan-

ism (the consistency manager) to ensure that the data bases remained

consistent with each other. Once this manager is built the data bases

are no longer "inviolable units"; they are an integrated and functioning

* whole.

-58



- "..--- -

The problem of maintaining consistency is difficult. We observe

that the physical aspects of the different data bases suggest the nodes

that we've seen in our hierarchical theory. Also, the semantic aspect

(the information content) of each data base and the (informational)

relationships across data bases suggest the hierarchical notions we

presented. Recall that each data base has aid-specific information as

well as information that is also of interest to another aid. It's easy

to imagine the information of each aid as being partitioned according to

whether it was specific to that aid or a piece of 'common wisdom'. Each

of the aid-specific parts of the data bases resembles an autonomous

agent, responsible for its own integrity in precisely the manner that

independent functions within aids were autonomous and responsible for a

given task. We can pursue the analogy - the communication of con-

sistency information certainly resembles the communication of informa-

tion amongst nodes. We used the idea of ordinality to capture the ulti-

mate task structure of the hierarchical process; this allowed various • "

processes to run at once, and led to blackboard architectures supporting

inter-nodal communication. In particular, ordinality lends itself to

diversity and to somewhat amorphous task structures (ie beyond

input/output chains). Partitions across independent information along

with a background of communication of consistency procedures or data

strongly suggest that the ordinality and connectivity concepts have

natural analogues in data base design. (For example, the ordinality of

the hierarchy becomes a generalized partition function on the data

base.)
i

We can sum up the last by saying that data base analogues exist for

each hierarchical notion, with the most important and interesting

difference being that the transmission of consistency information may be

very different than the communications within the aids. (This may not 5

be true of interfaces which are designed to mediate inter-model incon-

sistencies. See Section 5.2.5.) The data base design begins to resem-

ble a network in miniature; this leads to an important design principle.

This is, simply stated, that we can imagine designing the str ture and

connectivity of the data base with the structure/ordinalit and
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connectivity of OCAP in mind. The basic idea is to tailor the structure

of the data base to that of OCAP: for example, we can imagine mappings

between nodes .in OCAP and the analogue of a node (such as one of the

aid-specific partitions) in the data base system. Figure 5-1 is an

attempt to present this idea visually; each task has a direct pipeline

to the data it requires, with the result that the overall data base may

exhibit, albeit implicitly, a hierarchical structure to match that of

OCAP. Links between data nodes represent consistency channels; those

between system nodes represent any of several types of inter-task com-

munications.

We note in passing that the consistency manager described in

chapter 4 is itself hierarchical. At the top level the broad context

defines the consistency rules, which then run at the lower level across

various parts of the data bases. This would be a natural place for an

explicit hierarchical characterization of the data base system.

This concludes our abstraction of the design of the data base sys- S

tem. The hierarchical concepts serve not only as metaphors for the con-

sistency manager of chapter 4 but also as a framework within which that

manager can be defined and within which different data base designs can

be rigorously compared. The remaining sections will focus on OCAP, yet

we will always attempt to use the theory as we have presented it here -

to identify principles that enable us to compare alternatives and avoid

purely ad hoc designs.

4 5.2.3 Required Functionality

This section discusses the requirements for a hierarchical system

such as OCAP. 'We will begin the design with a hierarchically structured

organization and with a pre-ordained set of tools to be placed in the 0

//eve tu l d si n. In Chapter I we r ked that a bierarchical

r6
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D PART OF

DATA BASE.

Figure 5-1: Task-Structured Data Base Design
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organization and a hierarchical software system are not "hierarchical"

in the same sense. This fact is the source of our remark in Section 5.1

* that there is'a distinction between hierarchical organizations and

hierarchical software tools that are meant to support the planning of

those organizations. This section will characterize the tasks of

* hierarchical designs in such a way that we can account for both of these

* - constraints' on what is possible and desirable for the OCAP.

A top-down view of system design emphasizes the tasks that must be

accomplished. This view takes its cues from our theory and from the

organization the design is meant to support. In parallel with this

there is necessarily a bottom-up view, which is motivated by the partic-

ular software tools that we possess. We will attempt to characterize

the interplay of these two design foci according to a MAPPING between

abstract tasks and available software. This leads to an iterative pro-

cedure; each view is refined by the other. In this way we hope that the

design of all of the new software and especially of the communication

links will seem natural. Actually, the result will be "natural" only

after a sufficient number of iterations.

Functional requirements for the design are derived from system con-

cepts, organizational structure, and output requirements. Conceptually,

we have nodes that perform tasks and are defined in terms of ordinality,

scope, and connectivity relations. These concepts are so general though

that they do not initially specify much about the design. The initial

system design is thus a result of the organizational context and
requ irements.

* 1 We quote: "Hierarchical organizations pass strong control rules down
through the echelons of command, while leaving a relatively larger por-
tion of the local management of tasks to occur without too much super-

* vision. .. In contrast, hierarchical software systems inherit the ri-
* gid task structure that is inherent in computer programs; the result

for software hierarchies is that a great deal of local supervision is
required to ensure teamwork while global supervision has to be very
flexible to account for the desires of many different users."
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There are two senses in which the TACC can be characterized as

hierarchical. It is hierarchical in the sense that there are levels of

command, with any given level talking primarily to the levels just above

and just below. It is also hierarchical in the sense of the fairly

strict sequence of planning actions that occur: intelligence analysis is

ongoing yet precedes target selection; this precedes resource planning,

which in turn precedes path planning. This organizational structure-A

supports a number of easily identifiable tasks; target selection,

resource allocation, and path planning could form our original require-

ment specification. The communication between the nodes, if not speci-

fied now, leads to an abstract map of the system, such as Figure 5-2,

which shows the initial nodes and makes no distinction between the types

of communications. To refine this design, we can specify the communica-

tion that is implied for each link, or we can overlay what we have in

the figure with the actual aids and use this to drive the first ref mne-

ment.

Choosing to follow the bottom-up approach we immediately identify

TPA with target selection, KNOBS with resource management, and RPA with

path planning. This imposes a great deal of additional structure on our

*graph. (Remember that we are looking for a new abstract graph, so that

* our refined graph DOES NOT contain a TPA, KNOBS, or RPA node. The graph

* is an abstraction of the task structure; the functions in the available

aids are always defined as a relation on this network. This is the

sense of the 'mapping'.) We require input nodes, and the communication

* that passes between the input nodes and the task-oriented nodes is

fairly straightforward. We also see that target selection should be

broken out into sub-nodes which reflect target identification and target

nomination. Target nomination in turn responds to resource availability

and a target prioritization task. This is where it gets interesting; on

the face of it it seems that we can equate the resource availability

node introduced for TPA with a resource node in the resource allocation

task - let's call this portion of the resource allocation node a

current-resource-maintenance node. We will refer to the remainder of

resource allocation task, after current-resource-maintenance is removed,

as resource-distribution. The design, as we have specified it thus far,
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NODE N, TARGET SELECTION

* NODE N2  :RESOURCE ALLOCATION

*NODE N3  PATH PLANNING

I LINK L0  COrVviNcATioN LINK; FORMAT, DIRECTION, AND
CONTENT UNSPECIFIED

Figure 5-2: initial Design Network
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has the structure of Figure 5-3. Note that the link specifications now

have a directionality and a specified content. These specifications are

provisional, especially since the format has not yet been specified.

We don't need to continue this particular refinement sequence down

into the resource and path nodes too much more; we are ready for the

point of the exercise. This is that the definition of the communication

links, which attends the definition of nodes, often turns out to be the

primary motivation for a design modification. This occurs when we com-

pare the new links with the existing aids according to our mapping. In

Figure 5-3, there is the implicit presumption over the resource availa-

bility channel that all forms of resources of interest to the target

prioritization task are passed. Thus we expect the number of aircraft
at each base and of each type are passed. At the next iteration, when

we associate the revised task structure with the actual aids we run into

a problem: TPA only plans relative to F-ll's. This suggests a major

design decision must be made (we finally get to the point of our exam-

ple).

In terms of our theory, the design decision is rendered as a choice

* between two options. The first option is to modify the scope of the

resource allocation node - that is, specialize it to F-ll's only.

* [This option is in fact mentioned, in two contexts, in Section 6. We

refer to this as an 'F-1ll Planner'.] The second option is to add non-

F-Ill planning capability to the system. The second option can be

viewed two ways: as a modification of each of the nodes in the target

prioritization task (i.e. all nodes broken out of that task) or as an

additional node, to be added to the network and to communicate not only

with the target prioritization task nodes but also with the current-

resources node. The second option enhances the capability of the system

over the capabilities inherent in TPA - the first view does this by

improving TPA; the second view does so by adding a new capability out-

side of TPA that becomes part of the overall design. We will favor

adding a capability outside of TPA, that is a new task/node in the sys-

tem, rather than attempting to modify TPA itself. We will refer to
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N1  N3

L.3 N4

5 L N6 L

*NODE N1  RESOURCE -AVAILABILITY

* N2 :TARGET - IDENTIFICATION

*N 3  TARGET - PRIORITIZATION

N4 :TARGET - NOMINATION

*N 5  CURRENT -RESOURCE -MAINTENANCE

*N 6  RESOURCE -DISTRIBUTION

*N7 PATH - PLANNING TASK

LINK LI TARGET LIST

L2 RESOURCES FOR EACH CATEGORY
L 13 BIDIRECTIONAL EQUALITY CHECK, SEMANTIC MATCH, (PROVISIONAL)

L4 SORTED TARGET LIST

L 15 TARGET LIST + EXTRA INFO., FORMATTED FOR ALLOCATION ALGORITHm

L 16 TARGET LIST + EXTRA INFO., FORMATTED FOR PATH -PLAN4NING ALGORITHM

L7 RESOURCES FOR EACH CATEGORY, (PROVISIONAL)

*L8 RESOURCE -TARGET PAIRS

o* Figure 5-3: The Next-Generation Network
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these extra nodes as interfaces -for obvious reasons. The idea of an

interface will be formally developed a bit further in Section 5.2.5.

Actual interfaces that we have designed are discussed in Section 6.

In addition to creating nodes to fill in the task gaps that arise,

it is easy to see that there may be functions in the aids that the

abstract network never calls upon. For example, a duplicated capability

might correspond to a single node and a single connectivity relation-

in which case one of the functions will lay dormant. (The connectivity

relation here resembles a "quotient function" in topology.)

We mentioned that the communication links tend to drive the design

decisions. Another aspect of this (besides the promotion of interface

* design) is in terms of the summaries that might be expected of a partic-

ular node's results. Often these are the result of the organizational

*context upon the network that is being designed. (We could formalize

the relation between the organizational structure and the structure of

the abstract network, but this is unnecessarily formal for our present

* purposes. A simple example, which will come up a number of times in the

* sequel, is-that of summaries and abstractions. Summaries refer to a

tailored output of data for the use of a particular type of user. (For

example, a prioritized target list could be passed to the chief of corn-

bat plans for review with all of the rest of TPA's output removed.) An

abstraction is very similar to a summary - it carries all of the

relevant planning information for a miniature planning task to be ini-

* tiated. (Thus if one wanted to set up a path-planning run with modified

defense installations an abstracted test case could be set up and

* shipped off (communicated to) the path-planning nodes. While both of

these forms of communication have superficial similarities, they actu-

* ally represent different types of communication links. This will be

discussed further in section 5.2.6.

The basic elements of our design program can now be stated: propose

* an initial network consisting of task nodes which satisfy the basic sys-

tem requirements. At successive steps, revise this abstract/design
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We believe that the final system is "complete" in a sense that can

be made rigorous. In fact we can now state that the reason for working

with the abstract design system and framing correspondence mappings,

rather than working with the actual aids and looking for a design that

fits everything together, can be stated (informally) in terms of com-

pleteness. The representational formalism that we've introduced seems

to be powerful enough to completely characterize the requirements and

behavior of a hierarchical system. Thus if we begin and stay within the

* purview of the hierarchical concepts we should produce a design that is

* complete in its tasks. (Admittedly this is a hypothesis, not a proven

fact, at the present time.)

The mapping from the design network to the existing capabilities

*has been sketched intuitively thusfar; essentially, we have not charac-

* terized the mapping so much as we have painted to its existence. We

* will not extend the idea into a fully-specified mathematical framework

in this report - though intuitive use of the ideas of domain, range, and

mapping properties will occur. We will wonder particularly about the

* NATURE of this mapping.

The next section will show how the mapping leads to an important

view about the semantics of the design network and thus the behavior of

the eventual system, OCAP. We will follow this discussion with an ela-

boration of two issues that arose in this section - the need for inter-

faces and the many types of communication links that must be designed.



II

5.2.4 The System Mapping and Mode-Based Planning

In the previous section we introduced the mapping from our abstract

network to the existing aids. We will refer to this mapping as the

"system mapping" from now on. In this section we want to sharpen this

notion of the system mapping. This will lead us to the concept of

"mode-based planning".

One view of the system mapping is that it measures the degree of

correspondence between the current, proposed design network and the

tasks that the existing software performs. Within this view it isn't

important which entity is primary and which stands in relation to the

other. This view is useful at the outset (the first few iterations of

the design methodology introduced in section 5.2.3); it is a way of col-

lecting the broad system requirements and the available technologies and

mediating their differences. At a certain point however, we will want

to emphasize the network we are designing over the existing software.

For example, this will happen when we reach the point of deciding

whether to use, modify, replace, or support a given existing capability.

(Recall the example in section 5.2.3 that led to a decision between

scope modification and interface design.) Furthermore, we will define

operators on the network, not on the existing aids' or on their tasks.

Thus we are led away from a correspondence measure and toward a true

mapping: the system mapping has the design network as its 'domain' and

the existing tasks or the aids as its 'range'. Note that the operators

implied by using, modifying, replacing, and supporting have the space of

networks as both domain and range.

The design network must support user needs in addition to accom-

plishing certain tasks. Some of these needs will not correspond to any

available software. For example, it is obvious that none of the current

aids has software that can produce a summary of the entire plan. This

encapsulation requirement arises only in the context of the system as a

whole. For this reason we will broaden our concept of the system map-

pin co include addition requirements (such as man-machine needs) in the
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range of the mapping.

Another view of the system mapping, which lies at the heart of

mode-based planning, is that it represents the semantics of the network.

The network is an abstraction, a set of symbols. The system map is used

to say that the symbols correspond to behaviors that we are familiar

with (current tasks performed) or to additional needs (man-machine for

instance) that we can envision. Thus the mapping is the denotation of

our network; it is the relation between a symbol representing a node or

a communication link and the MEANING of that node or link.

This sketch of the system mapping leads us to the question: "Is

there more than one system mapping, and if so can they exist in the con-
text of the same design?". The answer is that there is an important -

role for different system mappings and that a good design should support

several at once.

We've said that the system mapping specifies the semantics of our

network. If we imagine different mappings being applied to the same

network then we will have introduced different interpretations of the

same task - be it a problem solved at a node or data communicated in

some format over a communication channel. We will call these different

interpretations different "modes".

It is easy to see that mode-based reasoning is something we humans

do all of the time. If we are an expert, or a high-ranking official, or

pressed for time, we will tend to view a given requirement (say to

create a plan to attack a region and then to describe that plan) in dif-

ferent terms than if we are a novice, or a junior staffer, or have all
the time in the world. A mode is thus a context that defines our

interpretation of a given task. Our design must recognize that there

are different users, each with their own interpretations, and there are

even variable contexts for a given user. Our design must support these

interpretations; it will do so by allowing different planning modes.
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We will represent each mode as a system mapping. We will support

different planning methodologies, different users, and individual users

who change their mode (detailed-study to quick-overview) by pre-

designing different modes. We will then coordinate the application of

* all of the current mappings and update the design. Often the additional

mappings will simply pose extra requirements - though this will not

always be so. The most interesting cases are precisely those in which a

given element in the network has a different interpretation depending on

the mode. This happens quite often for the communication links: when a

user initiates a planning session a context is loaded (depending on the

user type and type of planning the user decides to engage in - such as

actual planning vs. what-if games) and according to this context the

output transmitted from node to node and the output transmitted to the

planner will be defined. For example, an officer in the WOC would get

detailed flight path information from the path planning node, whereas a

colonel that is in charge of the WOC and responsible for generating a

message to the TACC might (from the same node!) simply get a list of

feasible and infeasible targets plus a line of explanation for each

infeasible target.

The overall system is designed to support variable system mappings.

Extra nodes and links are created as required, and context dependent

* tasks and connectivity relations will be generalized so that they carry

along a 'tag' that reflects the context. When a system mapping is

applied to the (one) design network the given mapping will trigger all

of the appropriate tags and the complete denotation of each task and

communication then becomes available. (We can speak of this as the

i nterpretation of the design network relative to a given mode.) In the

same way, when the system is engaged a context is automatically set up.

0 This context defines all of the functions (tasks and communication

between task and from OCAP to the user). Before the system is engaged

all of the functions are defined only to the point of being relative to

a certain context. Thus the context (the mode and the user) has to be

0 entered before OCAP is fully initialized.
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Note that in some contexts certain nodes might be inaccessible -

for example, suppose that the WOC user cannot change the list of permis-

sible targets, or perhaps is denied access to the target prioritization

nodes as a whole. Thus there is a sense in which the context will end

up not only changing the meaning of some tasks and communication but

also the structure of the network; in some contexts some nodes will be

added ani others removed.

The concept of a mode or of variable system mappings has far-

reaching consequences, only one of which is the ability to characterize

access privileges in a crisp way. We will not be able to pursue it more

here, yet it appears that it could have a prominent effect on the types

of design networks that are considered. However, in Section 6 we will

mention three different modes of planning, each of which would .

correspond to a different system mapping that in turn identifies a dif-

ferent interpretation of the design network.

* 5.2.5 Design of Interfaces -

In section 5.2.3 we found that there were tasks that the overall

system had to accomplish that did not exist in the given aids. In gen-

eral, there are two types of tasks that don't come with the aids. These

are mechanisms to permit the aids to communicate with one another and

machinery to facilitate communication between the planner and the sys-

tem. The first of these two is the set of interfaces required, and is

the subject of this section. The second (man-machine nodes) are dis-

cussed in the next section.

Up to this point, a node has been characterized as performing a

task, with the task defining the scope of the node. Since the nodes

have solved domain-type problems it has appeared that the purpose of a
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node is to solve a military planning problem or subproblem. If we were

to represent the domain problem in the form of a flowchart, then the

nodes would each be structurally related to that flowchart -each node

could be associated with a unique part of that flowchart.

Continuing with our flowchart analogy, we may find that some of the

*tasks defined by the domain problem simply didn't get solved in the

* existing aids and these will require new nodes. These nodes are similar

to the domain-type nodes just mentioned; they solve a problem that is

missing (in the aids) when we decompose the domain planning problem into

tasks. Since this is an inter-aid problem we'll refer to the node we

create as an interface node. For example, one aid may have a capability

* that is important (such as being able to plan for all types of aircraft,

not just F-111's) and we will decide to augment the other aids rather

than just use a portion of the available tasks from the given aid.

There is a stronger sense of interface-type nodes that motivates

the name. The existing aids were designed independently and the result -

has been that they tend to make different assumptions about the world.

* And even when they make the same assumption about some aspect (such as

* an output of one aid that is used as an input to another) they will

almost certainly have a different representation of that information.

Thus interface-type nodes are designed to resolve inter-model incon-

sistencies of structural (i.e., mediating differential assumptions) and

communicative (i.e., mediating differential representations) forms.

Note that both the structural and communicative forms respond to the -

requirement to set up a certain kind of connectivity relation - one com-

municates and resolves different points of view, another translates from

node to node.

Once the 'purpose' of a node is established (problem-solver,

interface-type, etc.) we can set about designing the node itself. In

this context of interface-type nodes special design issues arise; in the

remainder of this section we will highlight these issues.
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We would like the node's purpose to turn out to be the system map-
A!

ping function (see sections 5.2.3 and 5.2.4) as applied to that node.

But this is tricky because the existence of an interface node (an ele-

ment of the domain of the system map) by its very nature implies a gap J

of one form or another in the aids themselves, the range of the system

mapping, - so that if there is nothing to map to we have to wonder how

we initially recognize the need for nodes in the domain. (We have said - "W

that some nodes arise out of organizational requirements of the design -

yet these are unlikely by themselves to result in all of the necessary

interfaces.) The natural approach seems to involve having the designer

recognize gaps or defects in the range space and use them to construct

desired connectivity relations in the domain. In other words, we do not

recognize the need for nodes in the domain without first defining the

gaps in the range (of the system mapping). (This is, after all, what we

do informally: we see that an interface is needed, then we look to the

communication requirements and build something to perform the necessary

tasks.) From the abstract point of view this involves creating both a

node and its surrounding connectivity relations at the same time (i.e.,

as one integrated process since it is the node and the communication

that is required). There is probably a characterization in terms of the

system mapping that would do this for us; we won't pursue it here

though.

When we spoke of database issues, and even before when we origi-

nally addressed the general architecture within which a hierarchical

system would be most 'comfortable' (the result was a blackboard archi-

tecture) we hinted that the objects communicated between nodes were not

in any way inherLntly limited. In particular, the data that is passed

will not always be a list or a table or other passive output-type

object. In fact, we can turn this around and make the positive observa-

tion that in some cases a procedure will be the object passed. For

example, the allocable resources that KNOBS knows about may not be equal

to those initially assumed by TPA. In this case we found that a pro-

cedure was required to resolve the disparity. If we allow procedures to

be passed then we can characterize iterations in the network and even
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permit nodes to bargain for resources (both in the domain and for compu-

tational resources within the system)! Thus we envision an active net-

work of experts that passes not only formatted data but also procedures,

requests, and perhaps even guidance.

There are a few low-level design issues having to do with where an

interface node resides in the network. That is, there are instances in

which the original specification of two graphs differs but the behavior

of the two is identical. A simple example is the case where a node is

broken down into two sub-nodes with a simple channel between (the origi-

* nal node did two independent tasks in succession). There is one

instance of building an interface however in which the decision of what

* structure to adopt is very important. This is the instance in which the

interface node is not pulled out and given its own status in the network

but rather when the node is merged with an existing node. (In terms of

our theory the first option adds new connectivity relations, ordinal

relationships thus are added, and the only scoping issue is for the new

node. However, the second option has no effect on the structure of the

graph, possibly some on the connectivity relations, but will generally

have a profound effect on the scope/task of the node that is merged to.)

We encountered this problem when we initially thought about designing a

TPA-KNOBS interface and a KNOBS-RPA interface. It occurred to us that

we might use the rule-processing capability of KNOBS as an environment

for the interface. The idea was to express all of the consistency

requirements as rules (perhaps with appended procedures) and have the

KNOBS rule interpreter now become an expert interface as well. Above

all, this solution seems to be a very elegant use of KNOBS. In terms of

design issues, which is our focus here, it remains an open issue and one

with notable consequences for design. There are also important conse-

quences for behavior - since a merged network and a non-merged network

may end up differing dramatically. At any rate, there seem to be prac-.

tical reasons for ruling out the 'KNOBS-based-expert-interface' at the

present time. The most prominent reasons are efficiency of the rule

processor and the desire to be insensitive to replacement of aids over

time. (We know that TEHPLAR's rule processing capability will be quite
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different from that of KNOBS. Also, we expect path-planning technology

* to evolve rapidly as new weapons, sensor systems, and offensive capabil-

* ities evolve.) We would not rule out expert-system interfaces in gen-

eral. The underlying point here is that the efficiency and insensi-

tivity criteria are not met by an expert system which embodies multiple

and disparate forms of expertise.

This completes the discussion of interfaces. They perform a spe-

cial task, so it is not at all surprising that new design issues arise

for them. These issues have only been touched upon here, but perhaps

enough has been said to convince the reader that most of the design

issues (and the theory that supports the design) are tested more in the

context of interfaces than in any other single area we've discussed.'

We will proceed now to discuss the second case in which require-

ments are specified for the system which have little or no basis in the

individual aids - the man-machine requirements. These requirements take

* various forms, but almost all stem from design goals that pertain to the

whole, integrated aid rather than to its parts.

5.2.6 Design of Control and Man-Machine Interactions

There are many types of communication schemes present in a system

design; we have already mentioned a number of them in this report. For

example, an overall control of procedures is required, as well as a

mechanism that controls access to procedures based on user privileges.

Summaries at various levels and of variable sets of processes are

* desirable, both for human planners and for setting up test cases to

1 Of course, if our basic design metaphor had always been to simply
connect the existing aids in some suitable fashion then it comes as no

* surprise that all of the action exists in the design of the interfaces.
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evaluate a given aspect of a plan (we called these abstraction cases).

Problem-solving nodes communicate when their task is ready to begin and

when it is completed. Finally, there is communication amongst these

* nodes in the form of guidance; we gave the example of the path-planning

expert notifying the rest of the experts that a given target is and will

remain inaccessible for a specified period of time.

There are really only two types of communication occurring here.

* First, we have interactions amongst sets of nodes that solve problems

(the 'experts'). This is just the internal or automatic control of the

system. Second, we have interaction between sets of nodes and the human

planner; this covers all of the man-machine interactions.

We conclude from this typology that there are two forms of connec-

tivity relations in the system, depending on whether a human is involved

or not. We immediately propose that the concept of connectivity be spe-

cialized to account for these two forms alone. This has a large impact 4
*on our concept of design - since only two types of representations of

knowledge will be allowed. In effect, there is an implied design prin-

*ciple that says that a single representation of inter-nodal communica-

tion and a single representation of human-nodal communication is

required.

One way to implement this idea is to use a blackboard architecture

and to design the protocols that manage the blackboard either to 'talk'

to other parts of the blackboard or to talk to the human planner. This

sort of architecture, by enforcing uniform communication between tasks,

implicitly forces some degree of uniformity on the scope of the tasks at

each node. Thus the system will tend to be of even granularity. This

contrasts typical design approaches - in which each type of communica-

tion may have its own characteristic format and individual tasks may be

large or small. Finally, the architecture based on these two languages

is not sensitive to modification and replacement of the aids; it is easy

to support. The primary drawback is that this approach requires a

higher initial investment of effort -to design the languages and fit
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the existing communication within these languages.

5.2.7 Evolutionary Considerations7

The kernel aids are not rigidly defined for our system. Each of

our design principles must recognize Lhat the aids may evolve and/or be

replaced over time. Similarly, we expect that new aids solving new

tasks will appear and we must be able to accept them too. Hence the

design 'principles' of previous sections, as they are refined in the

* course of designing OCAP, must remain flexible.

5.2.8 Sumary of Design Issues

The purpose of this Section (5.2) has been to produce a set of

design rules from our theory of hierarchical software systems. These

rules are meant to formalize the use of that theory - they do not con-

stitute a design themselves.

We would like to produce a next-level analysis of the trade-offs

between design principles. For example, we do not want a concern about

flexible support of evolving aids to deter us in any way from producing

a working design and implementing it in a reasonable amount of time.

* Such a theory might bridge the gap between our theory and design princi-

plea and our design task. We have decided, however, that the study of

the trade-offs is best accomplished by actually designing OCAP (at least

an initial design); an abstract theory of trade-offs doesn't appear to

* be as valuable. Thus we will shift gears now and begin actually design-

ing hierarchical systems; we will conclude with a design of OCAP, in

Section 6.
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5.3 CANDIDATES FOR SYSTEM DESIGN

In this section, we present possible candidate sets of aids for

integration. A goal of this project has been to identify design princi-

ples as well as to present actual architectures for design. Thus, we

will first present our basis (criteria) for choosing particular sets of

aids for integration. Then we will present the candidate sets and

evaluate them according to the criteria.

5.3.1 Criteria for Choosing Candidate Sets

This section provides a set of four criteria for choosing the can-

didate sets of aids for integration. These criteria provide a set of

positive specifications for candidate sets, and also a way of pruning

out those candidates that are not valuable for several reasons. The

evaluation of candidate sets of aids in terms of the criteria will be

subjective in nature.

These four criteria are (1) the completeness of the task that the

integrated aid addresses, (2) the extent to which a particular indivi-

dual (job type) is likely to profit from the integrated aid, (3) the

degree to which the new aid is hierarchical, and (4) a list of pragmatic

issues. Each of these is described below.

The completeness of the candidate set, is defined in terms of the

meaning of the task that the proposed integrated aid supports. In our

theory of hierarchical systems we have identified the task that is per-

formed at a node as the scope of that node. If we were to "draw a node

around all of the original nodes" (we'll leave this vague) then we could

consider the overall aid to be a "super-node." Then the scope of the 6
integrated aid is the scope of this super-node. In particular, we can

simply look at the remaining connectivity relations (in this case.
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primarily the range of admissible input queries and the man-machine

interface) to determine whether a complete set of issues is addressed.

* With this framework we can speak at least semi-rigorously about 'gaps'

between existing connectivity relations, and we can evaluate the results

that aren't being presented. This is the most important criterion.

The second criterion, the degree to which the proposed candidate

set will support an individual, is more difficult to formalize. The

basic idea is clear though: a particular group of aids may provide "com-

plete" support for a given overall task - yet if there is not an indivi-

dual that would profit sufficiently by having this task solved then the *
quality of the integration (as measured by the completeness) is

irrelevant. The task is irrelevant if we cannot establish that a user

* should be performing it, regardless of whether such a job currently

exists, or may exist in future planning enviroments. Thus, the diffi-

*culty with formalizing this criterion is that we are required to evalu-

ate not only current job roles but also proposed job roles. This cri-

terion is important, and it should not be finally evaluated without the

* joint input of the Air Force planners and the technologists. For the

purposes of this project, though, we applied it based on our own under-

standing of these viewpoints.

The third criterion is that the proposed aid should be hierarchi-

cal. This is important since the effort of this work is not only to

produce a particular tool but also to investigate hierarchical systems.

Obviously this criterion is motivated not so much by a broad perspective

as it is by a project-oriented view.

The final criterion is that the proposed candidate set should be

feasible to build, test, and evaluate. There are several pragmatic

issues here. Among them are the scope of the candidates themselves as

they stand, the desirability and feasibility of creating nodes that

reflect a subset of a given aid's functions Ceg, dropping out RPA's

explanation facility), and the data base problems. We will also have to

face the effort involved in creating a demonstrable system both in terms

4 . 80 * .



of the functions finally settled upon in the design, and the host of

hardware problems to be solved.

The evaluation of several candidate sets using these four criteria

occurs in the following sections. Candidate sets that failed several of

the criteria are not mentioned. For example, it is hard to see how a

CTA-KNOBS aid a) solves a complete problem, b) defines a user who would

profit enough by having it to merit the cost of producing it, or c)

establishes a hierarchical system.

0i

5.3.2 Description of Candidates

We will describe four candidate sets of aids which most closely

matched the set of criteria described in the previous subsection. The

first subset (CTA, DART, DAGR, TPA) represents an OCA planning tool that

can be used in the Combat Operations Intelligence Division (COLD) in a

TACC. The second subset (TPA, RPA) is a first cut at a hierarchical

system. In the third, we add KNOBS to the second group to design a sys-

tem that can be used across three levels of the planning hierarchy. ii-,
Finally, we add DAGR to the third group to augment the data base manage-

ment at the highest planning level (TPA level).

5.3.2.1 Intelligence Tool (CTA, DART, DAGR, TPA)
0

This candidate architecture can be designed as a tool for the

Intelligence level of the planning hierarchy. CTA and DART work

together to assist the C3CM Analyst determine which C3 nodes are the

most important to attack. DAGR and TPA assist personnel in the COlD to

determine which airfield targets to attack. Together, they help build
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and prioritize the list of candidate OCA targets. --

CTA-DART

CTA and DART were individually designed to assist the C3 CM Analyst

of the TACC. CTA allows the user to consider different generic strategy

objectives such as remove command, falsify information, jam, etc. and

select those actions which maximize the probability that a particular

desired outcome (Deny Command, Decrease Control, etc.) will be achieved.

DART, on the other hand, is more of a data base manager. It allows the

C3CM Analyst to identify critical C3 nodes in real time.

To use these aids in an integrated way, the user would run DART to

update the C3 node data base, based on incoming messages and DART's

analysis of them. He would run CTA, in sequence or in parallel, and

plan the best set of strategy objectives and evaluate these objectives

based on cost and benefit. The user would use the up-to-date data base

produced by DART and these strategy objectives proposed by CTA to help

him determine which C3 nodes to attack. The integrated aid itself can-

not make the decision for the C3 CM analyst, but it would provide him

with valuable information to make a reasonable choice.

Note that there are no major interface problems between CTA and

DART. They use separate and distinct data bases; thus, there is no con- .

sistency problem. There will be no direct communication link between

CTA and DART. An interface is needed simply to ensure that DART is run

often enough to provide an up-to-date data base at the time CTA is used.

The interface also will lead the user through a systematic use of both

aids.

DAGR-TPA

Both DAGR and TPA help the personnel in the COID develop an Air

Order of Battle (AOB) file and determine which targets to attack.
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DAGR and TPA lend themselves naturally to integration. TPA uses,

as input, the AOB file to determine the best set of airfields to attack.

DAGR updates the AOB based on Kill Reports and Movement Summary Reports.

Thus, DAGR should be run before the user runs TPA, so that the most

accurate information is available. Note that although DAGR updates the

AOB, more inputs are needed to the AOB to reflect the true state of

information on the AOB. DAGR is not a complete AOB-update tool.

Because both aids use the same information but the information is

stored in separate data bases, this data must be kept consistent (see

Section 4). An interface is necessary to produce any communication

between the aids. (Actually, the communication is one-sided. When DAGR

updates the AOB file, it must inform TPA of the changes. TPA has no

reason to communicate information to DAGR.) In a more automated system, .

after the user logs onto the system, the interface will run DAGR, update

TPA's data base accordingly, and allow the user to run TPA at that

point. In a more human-guided system, the user would have to direct the

interface to run DAGR at the appropriate time.

Combining All Four Aids

After running CTA-DART and DAGR-TPA, the user will have two lists

of OCA targets: a list of critical C3 nodes from DART and a prioritized

list of airfields from TPA. There may be some overlap; some of the C3

nodes may be on the airfields which TPA outputs. The user will have to
coordinate the two lists to arrive at one set of targets that should be

attacked.

The integration of these four aids does not allow for any sys-

tematic way of using the two outputs from DART and TPA mentioned above. 4

Possibly, the user-interface could graphically display both the air-

fields and C3 nodes. This display would help the user in deciding how

to coordinate the targets.
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This candidate architecture is not hierarchical. It is designed

only as a tool for the COID of the TACC. Although the architecture pro-

vides the Intelligence Officer with valuable information, it is not a

complete tool. The Intelligence Officer will need more information to

make decisions than what is offered by these four aids. Thus, this can-

didate system fails at least two of the criteria, and we do not consider

it valuable to build as a hierarchical OCA planning aid.

5.3.2.2 Two-Level Hierarchical System (TPA, RPA)

A very simple hierarchical design of an OCA planning system con-

sists of only TPA and RPA. This system would use TPA to determine which

targets to hit and would compute the best path to those targets using

RPA. The system would be strictly an F-Ill planner since both TPA and

RPA were specifically designed for F-lIl's. Any extension to non-F-lll's

would require the addition of KNOBS (see next subsection).

The Target Nominations Officer in the COID would be the most likely E

user of the system. He would have access to the same data bases as the

route planner at the WOC has. The WOC planner would certainly want to

use the RPA-module of this system, but would probably have no reason to

use the TPA-module.
I.

The user of this simple hierarchical system could use the tool in

at least two ways. By running RPA first, the tool could compute the

survival to each target and use this number to adjust TPA's cost. (If

the probability of survival to a particular target is very low, then the

cost of getting there should be much higher than if the route were

safer.) Another function of the system would be to provide the TPA user

with special-case runs of RPA. These functions are included in the

Three-Level Hierarchical System described next, and the functions will

be elaborated upon in Section 6.

4 -84-
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We will need to design a TPA-RPA interface module to manage the

control of these functions and to ensare consistency. Data base con-

sistency should not be a major problem, other than ensuring that the RPA

target data base matches the TPA list of airfields.

This candidate architecture passes some of the criteria described ....

in Section 5.1 but is not complete for non-F-Ill planners. Thus, in our

next architecture, we augment this architecture with KNOBS.

5.3.2.3 Three-Level Hierarchical System (TPA, KNOBS, EPA)

If we add KNOBS to the above system, we get a system which spans

three levels of the planning hierarchy (target nomination, resource

allocation (aircraft and ordnance), and route selection). KNOBS enables

the user to use the integrated tool to perform weaponeering and aircraft

assignment as well as target nomination, targeteering, and path selec-

tion.

The users of this three-level system will most likely be the Target

Nomination Officer in the COlD and the planner in Combat Plans. The

Target Nominations Officer will have more information available to him

than if he only had access to TPA. Thus he can make better decisions as

to which targets to attack, given information on aircraft assignments

and path selection. Similarly, the planner can make better decisions if

he has access to RPA. The WOC planner would probably only have use for

the RPA-module of the integrated aid, unless he wants to suggest alter-
natives to attacking assigned targets that he determines are well-

protected by air defenses.

Many useful functions will be available to the user of this three-

level aid. Constraint-checking, monitoring measures of effectiveness of

the aids, better evaluation of cost, and the extension to non-F-liE's
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are just a few of them. These functions are discussed in more detail in

Section 6. Note that three interfaces -- TPA-KNOBS, KNOBS-RPA, and

RPA-TPA will be needed to be built to perform these functions. A user

interface will also be needed. Again, we discuss these interfaces in

detail in Section 6.

This three-level hierarchical system passes all of the criteria

presented in Section 5.3.1. With the addition of KNOBS, the system can

extend to non-F-iii's if desired. The details of just how this will

occur is discussed in Section 6. There will, of course, be some prag-

matic issues that must be addressed, such as data base consistency, but

these issues can be resolved without too much trouble.

5.3.2.4 Augmented Three-Level Hierarchical System

If we add DAGR to the system described above, we do not add another

level to the hierarchy, but we do augment the TPA level with a data base

tool. DAGR updates the AOB file which TPA must access. Thus, by

including DAGR in the integrated aid, we allow the AOB data base to be

updated within the entire integrated system.

To include DAGR, we would need to build a DAGR-TPA interface

module. This interface would be similar to what we described in Section

5.3.2.1 when we discussed the DAGR-TPA module of the Intelligence Tool.

The interface would control the updates to TPA's AOB after DAGR is run.

Data base consistency would be maintained through a Consistency Manager.

Although this candidate system allows more information to be used,

the addition of DAGR in a sense makes the tool less complete. DAGR

updates the AOB, but the AOB needs more information than DAGR currentlyI
uses to be as up-to-date as possible. Thus, if we add DAGR to the

" integrated system, we still need another tool to input more data to the
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AOB. Thus, this augmented system does not pass our criteria of corn-

pleteness.
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6. SYSTEM DESIGN: TPA, KNOBS, RPA

The three-level hierarchical system - TPA, KNOBS, RPA - discussed

in the previous section is selected to be the basis for the OCAP. We

saw that this system passed each of our criteria for a valuable OCA

planning system, and thus, we recommend that the three aids - TPA,

KNOBS, RPA - be integrated into the OCAP. An overview of the OCAP is

shown in Figure 6-1. This figure shows the flow of data, interfaces,

and various users. It will be referred to throughout this section.

6.1 INTRODUCTION TO DESIGN

This section discusses the design issues raised in Section 5.2 in

terms of a practical design of the OCAP. We recommend that this design

be implemented when integrating the three aids - TPA, KNOBS, RPA. Sec-

tions are structured in parallel to those in Section 5.2.

The design of the data bases across the three aids will be dis-

-0 cussed first. This section is followed by a description of the func-

tions that the OCAP will serve. Then we discuss the different modes of

planning a user might choose and how he can use the OCAP to serve those

modes. The interfaces needed for the OCAP are discussed next, followed

by man-machine interactions and user models. Finally, we discuss how

the OCAP might evolve and what we need to consider for the future.
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Figure 6-1: Hierarchical OCA Planning System
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6.2 DATA BASES

Each of the three aids in the OCAP will access its own separate

data base. Individual data bases per aid is necessary due to the

software and hardware constraints of each aid. Thus, there will be

redundant information stored across the aids' data base which must be

* kept consistent by a Consistency Manager as described in Section 4.

The scenario used for any run of the OCAP must be consistent across

all data bases. Currently, each of the data bases include information

for different scenarios. TPA contains 50 Warsaw Pact air bases. KNOBS

targets are located primarily in East Germany. RPA contains test

scenarios only, and thus they are probably not consistent with TPA or

6 KNOBS. A common scenario must be selected for any set of runs of the

OCAP, and each of the data bases must be updated accordingly.

The scenario data base will include three major divisions: intelli-

gence data, own force data, and enviromental data. These are shown in

* Figure 6-1. The intelligence data will include enemy targets (i.e.,

airfields), their locations, the components on each airfield, their dam-

age states, and their locations. Intelligence data will also include

air defenses' locations and types.

Own force data will include high level planning goals and con-

straints, airfields and their locations, numbers of each type aircraft,

6 and amount of ordnance.

Envirornental data will include terrain data that is required for

RPA and the weather parameters of ceiling and visibility at the air

a bases.

Additionally, the scenario will have a script describing the state

of the enemy airfields and the number of friendly aircraft available

* over a time line.
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Note that because some of the data will be represented differently

across data bases, the Consistency Manager must check consistency

periodically while the OCAP is being used. It is not enough merely to

ensure that the initial data bases are set up correctly at the start of

the OCAP session.

6.3 FUNCTIONS OF THE OCAP

The primary function of the OCAP is to provide the pilot with the

best set of targets and flight plans that are consistent with the avail-

* able aircraft, ordnance and environmental conditions. The three aids -

TPA, KNOBS, RPA - cover several of the important hierarchical planning

functions required to achieve this goal. These functions are indicated

in Figure 6-2.

The OCAP will allow input and planning expectations to flow

smoothly from one level of the hierarchy to another. Figure 6-2 shows,

in the left hand column, input data and constraints used by each of the

planning functions. The arrows going down into each box indicate the

planning assignments and expectations from the next higher-level func-

tions. TPA receives its planning assignment from the user at the Intel-

* ligence level who has a set of goals in mind. KNOBS gets its planning

I assignment from TPA in the form of a prioritized list of targets and the

amount of desired damage to the targets. Finally, RPA's planning

assignment is a result of the aircraft-target assignments made by KNOBS.

The OCAP will also support feedback across the levels of the

hierarchy. The arrows going up from each box in Figure 6-2 indicate

feedback to a higher level. Feedback is in the form of the expected

performance that can be achieved with the resources available and the

applicable constraints. Feedback enables levels to perform their own

functions better. For example, survivability feedback from RPA to TPA
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enables TPA to adjust the cost it calculates of attacking a particular

airfield. Feedback from KNOBS to TPA allows the user to compare overall-

* measures of effectiveness computed by TPA with those actually achieved

by KNOBS.

The computation and comparison of measures of effectiveness is a

primary function of the OCAP. Measures of effectiveness are used in

hierarchical systems for two purposes. First, they summarize and give

* data for the evaluation of a plan as it is shaping up. The second pur-

pose is to facilitate a change in the flow of control in the hierarchi-

cal process. (The latter is essential to a truly hierarchical system.)

For example, if the number of targets whose missions have low probabil-

ity of survival values computed from RPA is large, the user may want to

modify the TPA data base and then re-enter the planning system at the

TPA level.

TPA computes the quantitative measure of effectiveness as the

overall number of enemy sorties reduced. For good planning, the OCAP

* should provide the capability to record this and similar measures, such

as percent reduction, for the geographic region which the enemy aircraft

can reach and for the type of aircraft. These measures will be indi-

cated over time. Qualitative measures of effectiveness for TPA will

include some or all of the following:

1. The degree of consonance with apportionment and allocation deci-

sions.

* 2. overall maximum value versus value distribution over regions and

time.

3. The sensitivity of a given quantitative measure of effectiveness as

a function of the number of friendly aircraft available.

4. Types of enemy activities degraded (e.g. , air-to-air, air-to-
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ground, air-assault).

5. The number of high-value targets of opportunity that are covered

(e.g., an enemy general is expected at airfield A tomorrow, so we

could list it as a high-value target and get a report).

KNOBS/TEMPLAR measures of effectiveness will include some or all of

the following:

1. Degree of consonance with overall apportionment and allocation

numbers.

0 2. The number of constraints, according to priorities, not satisfied.

3. The number of high-value targets of opportunity covered.

RPA measures of effectiveness will include some or all of the fol-

* lowing:

1. Probability of survival for individual missions.

2. Overall probability of survival for all missions planned.

0 3. Number of targets with reasonable value that have a mission proba-

bility of survival nearly equal to one.

0 The OCAP will compute and compare some or all of the measures

listed below:
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1. The TPA measures of effectiveness.

2. The TPA value-to-cost ratio, where the cost is related to the

resources used and the probabilities of survival associated with

the RPA measures.

3. The percent of individual missions that have a probability of sur-

vival exceeding an acceptable threshold.

4. The probability of survival averaged over all missions.

OCAP will support its data flow and feedback functions including

calculation of measures of effectiveness, through interfaces between the

aids. Section 6.5 will discuss the interfaces and their specific func-

tions in muc., greater detail. These interfaces may be driven by dif-

ferent perspectives. These are discussed next.

6.4 PLANNING MODES

There are three basic perspectives from which one can plan: top-

down/value-driven, resource-driven, and cost-driven. Each of these

planning modes imply certain necessary characteristics of the inter-

faces: for example, whether the interface uses value or cost notions.

The modes also imply different sequences of processing the planner would

use while running the OCAP. These modes and processing sequences are

described in this subsection. Following the description of the three

modes is a discussion of composite perspectives of planning. This dis-

cussion combines all three planning modes to a more general approach.
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* 6.4.1 Top-Down/Value-Driven Planning

Figure 6-3 indicates the flow of hierarchical planning activities

when maximizing the value derived is the driving goal. The solid lines

indicate positive flow and, in some sense, control of authority. The

dotted lines represent feedback information of an alerting nature rather

than directives. For example, if RPA indicates an extremely dangerous

mission to a specific target, an alert would be sounded to KNOBS where

* the aircraft mission assignment was made. This alert is informative in

the sense that it points out the degree of danger and possible loss of

aircraft rather than stating that the mission cannot be flown. The dou-

ble lines indicate data flow.

0 The sequence of processing for the top-down/value mode is as fol-

lows: TPA is run first, followed by KNOBS. If KNOBS finds a way of

* potentially getting better value by assigning aircraft to targets, not

necessarily in the order of the original prioritization, it would feed

*this information back to TPA. (This type of feedback requires a capa-

- bility, either in KNOBS or the TPA/KNOBS interface, to accept a ranking

of targets based on the planner's judgment, i.e., an ad-hoc value.)

For example, consider the data collected in Figure 6-4. For con-

venience, we have assumed that "value," as both TPA and KNOBS understand

it, consists of numbers of points. Suppose that there are three tar-

gets, A, B, and C, and that TPA has assigned points (or the interface

* has) for each. Now suppose the planner has made judgments of value as

shown. TPA's values are the result of sortie reduction. The planner's

va1'ies arise from the following considerations: Target A is valued at

* 10 points. Target B is strategic - or perhaps Target C is just 'too far

*away. So Target B gets 15 points, even though little sortie reduction0

-~ results from hitting it, and Target C just gets a few points. The point

is that, assuming we only have enough resources to hit two targets, the

goal of maximizing overall value leads to different target sets being

chosen (by the planner as opposed to TPA). The feedback has thus

* informed TPA and/or the planner that alternative target rankings exist. *
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Figure 6-3: Top-Down/Value-Driven Planning
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It will seek approval for one list, or even accept an entirely new list.

The interface between KNOBS and TPA could start keeping statistics on

which targetsa are being suggested, so that at the end of a planning pro-

cess, the difference in the cumulative value derived from all targets

targeted could be compared with the original values of targets provided

by TPA.

KNOBS may also request TPA to be re-run again if, after running

4 KNOBS, all the targets have been hit, but some aircraft are still avail-

able. This result would occur if the user had told TPA there were fewer

aircraft than there actually were. Thus, TPA would need to be re-run

with more aircraft, and the processing would continue.

After KNOBS is run, the aircraft-target assignments are passed to

RPA. RPA computes the probability of survival to each target. If the

survival is too low for some targets, and thus the expected value that

can be achieved from those targets is much lower than TPA and KNOBS ori-

ginally computed, RPA feeds this information back to KNOBS. KNOBS tries

other aircraft assignments or returns flow to TPA, and the process is

repeated.

6.4.2 Resource-Driven Planning

In resource-driven planning, (represented in Figure 6-5), the

planner at the KNOBS level decides which targets to hit. He will us-

* the nominated list of targets received from TPA as a basic guideline,

but using the availability of critical resources, timing issues, and his -

own judgment, he (using KNOBS/TEMPLAR) will make the final decision as

to which targets to hit. The TPA-KNIOBS interface will then inform TPA

* of the revised prioritized list of targets. Thus, although TPA is run

prior to KNOBS, KNOBS uses TPA output only as a basic guideline and not

as a driving force.
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Figure 6-4: TPA/KNOBS Value Trade-offs
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The planner will consider all types of resources, including those

which suppress air defenses, such as F-4G's, EF-il's, and tankers. The

KNOBS-RPA interface can request RPA to determine the probability of sur-

vival to a specific target. From this value, the planner can judge

whether air defenses must be suppressed before attacking the target.

*KNOBS can then determine which resources to use against the air

defenses, and the interface will inform TPA that the air defenses will

be hit. This interaction between KNOBS and RPA implies that KNOBS and

RPA runs will be interleaved. That is, KNOBS will be interrupted occa-

sionally for special-case RPA runs.

The timing issue considered in resource-driven planning is an

important one. The planner does not want the activity at the air base

to get too high. The flow of the aircraft in and out of the air base

must be kept at a reasonable level. Thus, the planner will also use

KNOBS/TEMPLAR to keep track of this flow and suggest alternative targets

to hit if the target it was considering attacking must be hit with an

aircraft from an air base which is overcrowded at the time. The timing

issue can be supported by the flow of processing described above.

6.4.3 Cost Driven Planning

When cost or safety is the driving force, the feedback from RPA to

KNOBS and TPA will take the form of a directive to change targets that

have been nominated and/or prioritized. We call this cost-driven plan-

ning. It is represented in Figure 6-6.

The flow of processing which supports cost-driven planning is as

follows. TPA is run first, followed by KNOBS/TEPLAR. KNOBS determines

the aircraft assignment based on the prioritized list of targets it

receives from TPA. KNOBS then passes this list of aircraft-to-target

assignments to RPA. RPA will then compute the best probability of
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Figure 6-5: Resource-Driven Planning
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00

survival to each target. If it is below some threshold, it will inform

KNOBS that it needs a new assignment. Feedback will also flow up to the

TPA level and suggest that the target list be revised. This process is

repeated until RPA is satisfied with the list of targets, based on cost

(safety) factors.

The planners at the WOC (RPA level) can also, upon determining that

the route to a target is too dangerous, suggest other targets to hit.

For example, they can suggest that air defenses be suppressed before

attempting to attack a specific target. They can also use a coarse

model of TPA and/or KNOBS to determine a revised list of targets to

attack, compute the probability of survival to those targets, and feed

suggested alternatives back to TPA and KNOBS.

6.4.4 Composite Perspectives of OCA Planning

In general, it is expected that the hierarchical planning process

will respond to varying mixtures of the above three approaches to plan-

ning. The relative weight of these three approaches will probably, in

fact, change during the planning process for any one day. Hence the

architecture must have the flexibility to support the user as he changes

perspectives and continues his planning process. This flexibility will

be attained by designing the interfaces and the user environment support

systems to accommodate all three of these major perspectives. Addi-

tional perspectives that are found to be important during the develop-

ment of the aids, using the development scenario, will also be sup-

ported.

The flexibility of the architecture, in accommodating the three

different perspectives, provides a capability to do the overall planningi
process in various ways. At one extreme it would accommodate a batch

process. That is, the TPA activity is completed. A stmary list of
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targets is created for KNOBS to process one at a time. KNOBS completes

its processing and then outputs a list of aircraft and target assign- L

ments for RPA to use in determining the individual flight plans. This

type of (batch) process does not accommodate improving the overall OCA

mission plan unless there is sufficient time to re-run each of the

processes after anomalies have been discovered which indicate an impor-

tant change. Unfortunately, current planning tends to resemble batch

planning. This may be the result of the fact that different organiza-

tions are involved in the different parts of the plan. In part, it is

also due to the lack of time to meaningfully consider many alternatives.

* However, the proposed hierarchical planning system does not have the

same limitations as batch processing; this is the strength of the

* hierarchical planning concept.

We will now consider architectures that support the feedback and

adjustment loops. Note that if these feedback and adjustment are

*"turned off," we have the batch process. The simplest architecture that

uses feedback is represented by a case in which a new object, such as a

* new target or new resources, arises. This architecture is able to

recognize such a condition, stop, do detailed planning if the planner

wishes (on the new object), and then continue with what it was doing.

This type of planning provides the capability to do lower level analysis

before binding a decision at a higher level. For example, if an enemy

airfield was being considered that had never been attacked before, the

planner might wish to run an RPA process from the friendly airfield to

the enemy airfield to get an assessment of the cost (the danger to our

* own fighter bombers). The TPA planner would not necessarily make a com-

plete interactive run of the RPA system; he would only get the results

of a single dynamic programming estimate of the probability of survival

on the new target.

A more advanced architecture that uses feedback would not have to

* stop what it was doing should detailed planning be needed. It would be

a decentralized architecture, perhaps based on a "blackboard" system

(aids become knowledge sources, interfaces become blackboard managers
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* and critics, etc.) The decentralized architecture is able to task a

lower-level process to do a more complete analysis and report the result

when it has it. Meanwhile, the higher-level planner continues with its

own target considerations.

Note that this interaction between different levels in the planning

* hierarchy permits incremental adjustments to the overall planning pro- -

cess. This is contrasted with the batch procedure; if all adjustments

* are held at bay until the plan is completed, major modifications may be

required.

6.5 ITERFACES

The key to integrating the basic functions performed in TPA, KNOBS

and RPA into the OCAP lies in the interfaces. By making these inter-

faces "intelligent," we can produce summary information, set alerts, set

controls for finding information on special case situations, and

interact with the user at several levels in the planning process. These

capabilities will allow a user to access the computer capability at any -

one of the functional levels in the hierarchy and obtain results at his

level of expertise.

Figure 6-1 indicates the interfaces between TPA and KNOBS, KNOBS

and RPA, and RPA and TPA. Through these interfaces, the user will be

* able to interact with each of the aids. Referring back to Figure 6-2,

there is also a need for an interface to personnel and to organizations

responsible for apportionent allocation and other high-level goal gui-

dance and performance monitoring. The TPA/KNOBS interface will incor-

porate the functions that are required to interact with the higher-level

planning personnel. The interaction with these higher-level planners

within the hierarchical OCA planning system will take place through the

user in the current model.
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The flexible architecture discussed earlier will allow accessing

any of these interfaces at any time the user wishes. This will permit

the user to use the OCAP in the number of ways discussed in Section 6.4.

In fact, it will allow the user, to some extent, to change his planning

perspective back and forth.

In the future, the OCAP could include not only TPA, KNOBS, RPA or

its equivalent, but also coarser models of each of these functions.

Thus, a user would not necessarily have to interact closely with the

functional model to get insight into a specific problem. For example, a

coarse model for the RPA function might be an expert system that merely

indicates the number of air defense systems an aircraft would fly over

(or near) on a user-supplied route. It might have some thresholding

scheme that would predict levels of danger depending on the numbers of

air defense systems overflown. Thus, a planner at the TPA level could

get a coarse estimate of probability of survival, without actually hav-

ing to interact with RPA directly.

The following subsections indicate some of the capabilities that

should be built into each of the interfaces of the OCAP.

6.5.1 TPA-KNOBS Interface

The TPA-KNOBS interface will be the most comprehensive. It will

contain mechanisms for constraint-checking, for monitoring and assessing

measures of effectiveness, and for translating TPA output to KNOBS

input. These functions are described in this section.

-106-

7z*



6.5.1.1 Constraint Checking

The TPA-KNOBS interface will contain two types of constraint check-

ing mechanisms. The first will exist outside of the core aids, while

the second will use the current constraint checking mechanism already

existing in KNOBS/TEMPLAR.

The first constraint checking mechanism will be used by external

personnel and/or the user of the OCAP. While the user is running the

system he, or another planner, may want to know the status of the plan.

That is, he may ask how many resources have been assigned, from which

bases, etc. Thus, he will want some summary information. The TPA-KNOBS

interface will contain a constraint checking mechanism that keeps track

of own forces and checks that constraints are not violated. This

mechanism will be able to produce summary information for users to

review and analyze.

The second type of constraint-checking mechanism exists within

KNOBS currently. The interface will make use of this mechanism to keep

track of own force data. Thus, if KNOBS attacks, say, only eight of the

ten targets recommended by TPA, the interface will be able to feed back

to TPA a list of targets that were not hit and the location of available . -

resources. Note that, in general, we would like to keep the interfaces

separate from the core aids. But since KNOBS and, later, TEMPLAR

already contain constraint checking mechanisms, we can make use of them

in this case.

6.5.1.2 Overall HOE Assessment

The interface modules will have mechanisms for monitoring and

extracting parameters that accumulate into the measures of effectiveness

discussed in Section 6.3. This monitoring capacity will occur for the
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current plan being developed, but it will also retain past days' plans

for comparison trends and guidance for today's plan. Specific measures

of effectiveness that the TPA-KNOBS interface will monitor include a set

of parameters that accumulate into indications of the degree of conso-

nance that is being attained with the apportionment and allocation deci-

sions. This will be done for the overall case, i.e., all geographic

regions as well as by each geographic region of interest. (There are

two parts to this geographic compartmentalization, (1) enemy areas and

(2) the friendly army areas which are covered by various enemy aircraft

from enemy air bases within range.)

An example of how the TPA-KNOBS interface will assess measures of

effectiveness follows. A specific MOE computed by TPA is total enemy

sorties reduced. The TPA-KNOBS interface will accumulate this measure

as each mission is scheduled. This cumulative effectiveness will be

compared to the original measure computed by TPA. If the cumulative

value is less than the original, the interface will alert the user. The

user should then decide if he wants to replan the missions.

Additionally, the interface will have received a list of special

targets from a user at the beginning of the planning session. These

targets will be checked off as they are planned by KNOBS. The user will

be notified if these targets have not been planned by the time the

number of missions within the region containing the specific target

reaches or exceeds the number of missions allocated for that region.
Ie

40

6.5.1.3 Conversion of TPA Output to KNOBS Input

TPA and KNOBS process information from two different perspectives.

Given the number of F-Ill sorties for OCA, TPA will find the best set of

target components to attack, i.e., given cost, find the best benefit.

KNOBS, however, performs its functions conversely. Given a specific
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benefit (i.e., Pk for the target component under attack), KNOBS finds

the best cost solution, i.e., the number of aircraft required to produce

the damage desired. Thus, for each target component on TPA's target

prioritization list, KNOBS needs a Pk to use as input. KNOBS also

requires a time-over-target (TOT), which TPA does not use or compute.

Thus, a translation must be performed to form TPA output to KNOBS input.

(This will be part of the TEMPLAR processing task rather than an input).

The TPA-KNOBS interface module will produce a Pk for the target

component in one of the following ways:

1. Table Lookup. There are ten components to the prototypical air

base, each component can be in any one of five damage states. The

TPA will have identified the component, the existing damage state,

and the number of F-ill aircraft attacking this component. There

are fifty component/damage state possibilities. If we allow up to

ten F-Ills on any one mission, then there are a maximum of 500 Pk's

that would be possible. This first option for calculating Pk would

require JMEMS (Joint Munitions Effectiveness Manual System) to pro-

duce a table of Pk parameters for all 500 entries off-line. The

KNOBS process would continue for the remaining aircraft to be

assigned and the new target list that TPA provides.

2. Real-time Computation. The second option allows the user) while

running the planning system, to leave the OCAP and run JMEMS to

compute the Pk for only the specified target in which he is

interested. This option has the advantage of computing only the

Pk's that are necessary. But it requires user interaction.

3. User Provides Pk. Finally, the OCAP could prompt the user to pro-

vide a Pk. The user can use his discretion in determining the

value.
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The TPA-KNOBS interface will compute a time-over-,arget, to use as

input to KNOBS, in two different ways, depending on aircraft type.

I. F-lll's. An F-ill has a sortie generation rate of one per day.

Thus, there are at least two ways the interface could determine a

TOT. First, it could simply select a TOT, over the 24-hour period,

at random. Choosing a random time makes sense from the planner's

point of view, because he does not want the enemy to guess his sor-

tie schedule. A second method for computing TOT is by constraint

checking. The interface would keep track of the flow of aircraft

out of each base and determine a TOT that is consistent with this

flow. This method would ensure that air base runways do not get

overcrowded at any one time.

2. Non-F-lllfs. Aircraft other than F-lll's, such as A-7s, have sor-

tie generation rates of more than one per day. (Note that a flight

day for A-7s consists of about 12 hours during the day. They can-

not fly at night, in contrast to the F-ll"s.) Thus, the interface

will compute a "turn time"; that is, the total hours of fli.nt day

divided by the sortie generation rate. Then the interface will

determine a TOT over the turn time in the same way as for F-lIE's.

*v

6.5.1.4 Summary of TPA-KNOBS Interface Module Characteristics

The characteristics of this interface are enumerated in Figure 6-7.

These characteristics permit the user to exploit some of the hierarch-

* ical characteristics of the major planning functions required to plan

effective OCA missions.
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1. CONSTRAINT CHECKING

0 PROVIDES SUMMARIES TO USERS

O PROVIDES FEEDBACK FROM KNOBS To TPA

2. MOE ASSESSMENT

0 MONITORS PERFORMANCE

0 ACCUMULATES MEASURES OF EFFECTIVENESS

O ALERTS USER IF CUMULATIVE MOE IS TOO LOW

3. TPA OUTPUT---- KNOBS INPUT

o PK

- TABLE LOOKUP

- REAL-TIME COMPUTATION

- USER PROVIDES PK

o TOT

- RANDOM

- CONSTRAINT CHECKING

F

I Figure 6-7: Summary of TPA-KNOBS Interface Characteristics
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6.5.2 KNOBS-EPA Interface

The KNOBS-RPA interface will perform at least four basic functions:

(1) control special-case RPA runs requested by KNOBS, (2) alert the user

when particular mission probabilities of survival are too low, (3) build

a summary of probability of survival, and (4) develop the OCA lines of

the ATO. This section describes each of these functions.

Note that the current RPA gives us the probability of survival for

an F-Ill flying from the friendly air base to the designated target.

This probability of survival could be used as an approximate probability

of survival for any of the other aircraft types. However, since the F-

I1 has terrain following capabilities, the KNOBS-RPA interface module

would want to somehow disable this function in RPA, possibly by con-

straining the aircraft to fly at a fixed altitude. This would give a

more realistic probability of survival for the other types of aircraft

that did not have terrain following. (e.g., F-4, F-16, A-7). This

amount of accuracy would probably suffice for the planners working at

higher levels in the hierarchy, other than the WOC.

6.5.2.1 Special-Case EPA Runs

The KNOBS-RPA interface will control the processing of special-case

RPA runs. It will receive requests from KNOBS when special case con-

siderations are being analyzed in the KNOBS process. That is, if the

KNOBS process wants a refined estimate of the probability of survival to

a particular target from a particular friendly air base, the KNOBS-RPA

interface module will be notified. The interface will then set up and

control an RPA run to calculate the desired probability of survival.

This RPA calculation could be controlled by the interface module to pro-

vide an automatic answer by simply using the dynamic programming subset

of RPA. Or it could compute a more refined estimate by requesting the
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user to interact with the RPA model and then to tell the interface the

resulting probability of survival.

6.5.2.2 Alerting the User

The interface module would also receive alerts from the RPA plan-

ning process when aircraft-to-target assignments result in a mission

whose probability of survival is beyond a reasonable threshold according

to the Wing's guidelines for safety. This alert would be used to alert

the user about the low probability of survival. The interface would

keep track of the resources and ordnance left to be scheduled so that

the user can re-run KNOBS for that particular target if he so desires.

6.5.2.3 Summary of Probability of Survival

This interface will also build a summary of the friendly aircraft

survival expected over all of the missions. This summary will probably

be available for the user to examine at any time.

6.5.2.4 Build ATO

The KNOBS-RPA interface module will incrementally develop the OCA

lines of the ATO that will be transmitted to the Wing Operation Centers

via CAFMS (..omputer Aided Force Management System). The collection of

these ATO line items builds a summary, as the hierarchical planning pro-

cess progresses. The summary information can be used for review by the
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user. In the future, the CAFMS software for sorting on various parame-

ters, could also be inserted in this module to help the review process.

6.5.3 RPA-TPA Interface

The RPA-TPA interface will provide two major functions. It will

furnish TPA with expected survival capabilities which TPA can use to

adjust its cost. Also, the interface will process and control special-

case runs of RPA. These functions are described in this section.

II

6.5.3.1 Adjusting TPA's Cost

The RPA-TPA interface will provide TPA with expected survival capa-

bilities to each of the enemy airfields. (For most planning purposes at

the TPA level, a rough approximation to survival is sufficient.) This

estimate of survival could be pre-calculated using the dynamic program-

ming part of RPA to calculate the probability of survival from each

friendly airfield to each enemy airfield of interest. This pre-

calculation could be done once at the beginning of the planning cycle,

after the new enemy air defense Order of Battle information is avail-

able. The results of these pre-calculations would be stored in a table

for lookup upon request by the TPA process. (Note that this pre-

calculation may not have to be done completely each day if the enemy air

defense situation changes only slightly.)

The planner, through one of the user interfaces, could use these

pre-calculated survivability calculations to adjust the number of air-

II* craft suggested by TPA for a particular air component. Or, the RPA-TPA

interface could adjust the number automatically. For example, if TPA
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determined that four aircraft should be sent to an enemy air's POL site,

and the RPA-TPA interface indicated the probability of friendly aircraft

surviving the flight to the airfield were .8, then the total number of

aircraft that should be assigned to achieve four at the target would be

4/.8=5 aircraft. This use of low-level information in the higher TPA

level of the planning hierarchy provides a capability primarily for

Intelligence personnel. They are able to make more accurate estimates

of the effects of survivability which the pilots are likely to use.

6.5.3.2 Special-Case Runs

The other major function of the RPA-TPA interface module will be to

. provide data to the TPA process in response to special requests. The

planner using TPA could, for example, put in a special request for a

refined estimate of survivability to the enemy airfield if he feels the

air defenses have changed significantly or if he is targeting an enemy %

air base that has not been targeted before. In these special cases, the

" interface coulQ either (1) run the dynamic programming portion of RPA

only or (2) interact through the user interface to involve a planner

familiar with the RPA process to give a detailed result for the expected

probability of survival.

* This function is similar to the function the KNOBS-RPA interface

will perform, described in Section 6.5.2.1.
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6.5.4 Scenario Data Base - Core Aids

Although Figure 6-1 does not indicate explicitly an interface

between the scenario data and the various aids and interface modules, it

is clear that such an interface must exist. However, this inferface is

very simple and its function will only be to convert the scenario data

into the specific formats that each of the aids and interface modules

require. This must be done at the initialization time for running the

entire planning process and at any later time when the scenario data is

changed.

6.6 USER MODELS

The hierarchical OCA planning architecture allows the human planner

to interact with the computer system through a set of user interfaces.

As indicated in Figure 6-1, there are four user core models which these

interfaces support. The four models are (1) the COlD user, (2) the Com-

bat Plans user, (3) the WOC user, and (4) the super-user. (Super-user

means the human planner can play a composite of the other three roles in

doing his planning.)

The user models provide a way for the user to interface with the

system at different levels to achieve different functions. A user model

is a domain-specific technique for tailoring the planning system's func-

tions to a given user. In other words, the planning system is composed

of many functions, and user models will define the access, processing,II

and output that a given user type sees for a given function.

The user of summary information is an important feature of the user

models. The interface modules will contain the computer support neces-

sary for the user models to provide summary information. These sum-

maries do two things. They abstract essential elements of cases that
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have been run and use the abstraction to set up other processes. It is

possible for the abstracted case to then run automatically. For exam-

ple, the summary might cause an input file to be modified and an aid

that is higher in the hierarchy to be run. The summaries are also

responsible for accumulating statistics; these statistics are used to

evaluate the OCA portion of the ATO. Hence, the summaries have an

active feature - creating cases to be investigated, and a passive

feature -collecting data for off-line evaluation.

Summaries will be the primary medium through which the human

interacts with the aid. In other words, they will be the primary inter-

face to the user (or user environent) when he is initiating a TPA,

KNOBS, or RPA process. Different user models will provide different

levels of summary information to the planner.

The four user models are described next, followed by a description

of the man-machine interface. This interface is required to enable the

user to interact with the OCAP while using a particular user model.

6.6.1 COlD User Model

This model will provide a set of menus and interaction protocols

for the user who is primarily interested in the target nomination and

targeteering levels within the hierarchical planning activities. This

user will be looking at the planning process primarily from the perspec-

tive of an Intelligence Officer interested in determining a prioritized

target nomination list, enemy air defense capabilities, and time-line _

effects on enemy capability. He will also be interested in weaponeering

to the extent of estimating the amount of ordnance required to achieve a

desired level of damage to the targets on the prioritized target nomina-

tion list. Thus, the COlD user model will provide for ease in interact-

ing with TPA, the TPA-KNOBS interface module, and the RPA-TPA interface
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module. In the future, this user model could become an expert system

and anticipate the types of interaction in which the COlD user would or

should be involved. .

The COID user model will allow the user to access all levels of the

OCAP. Detailed summaries will be available to him at all levels.

6.6.2 Combat Plans User Model

The Combat Plans user model will be effectively the same as the

model for the COlD user. The main difference is that this model will

provide ease of interaction between the human user and KNOBS, the TPA-

KNOBS interface module, and the KNOBS-RPA interface module. This user

model will also be more concerned with detailed summary information

about KNOBS and the above-mentioned interfaces. It would allow the

planner to change data items concerned only with the commitment of

resources.

6.6.3 WOC User Model

This user model will provide ease of interaction between the human

and the RPA, the KNOBS-RPA interface module, and the RPA-TPA interface

module.

The WOC user will have access to all features of the RPA-module,

but not all features of the TPA and KNOBS-module. For example, the WOC

user could not change the status of a target, but he could suggest that

specific targets be attacked. The WOC user model will provide the

planner with detailed summaries of RPA MOE's, but would not bother with

-118-

J- .



.,

such information concerning TPA or KNOBS.

6.6.4 Super-User Model

This model will provide equal access to all of the core models and

interface models. In the future, expert systems knowledge could be pro-

vided that concentrates on tradeoffs among the levels of the hierarchy

and allows the user to explore the effects of summary information and

special case planning items that arise.

6.6.5 Man-Machine Interface

For the user's point of view, it will not make any difference what

computers are being used for the individual aids and interface modules.

The user should only be concerned about performing the functions he

wants and needs in order to accomplish the hierarchical planning pro-

cess. Thus, the man-machine interface must take care of all of the sys-

tems issues of interacting with the appropriate machinery and control-

ling it appropriately in a relatively foolproof manner. That is, inad-

vertent or naive entries by the human should not cause the program to

quit functioning or to get into a line of reasoning that is not profit- . -

able. The "user friendliness" will be provided primarily through the

user models described above.

The primary interface devices will consist of a color graphics

capability, a regular terminal, and a keyboard with special functions

buttons programmed. In the future, models may include voice interaction

and/or touch screen displays.
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The color graphics capability will be similar to that which will be

developed during the TEMPLAR project. In particular, it will display

* geometric data indicating location of air bases and the specific com-

ponents that are being considered for attack at each enemy airfield.

* These components will be color coded. The regular computer terminal

* will be used for menus and to provide input and output of symbolic and

numerical data. Function keys will be provided for input and output

requests that occur frequently. The natural language capability in

KNOBS need not be extended or used extensively if at all.

Because the main purpose of this research and development effort is

to explore ways to do good hierarchical planning, the man-machine inter-

face for the integrated hierarchical OCA planning system will emphasize

the fundamental concepts of how to build a good plan. The three core

aids of TPA, KNOBS and RPA have each developed a research-style man-

machine interface. The man-machine interface for the integrated

hierarchical OCA planning system will continue in this research vein.

*The man-machine interface will be developed only to the extent that it

* allows planners to build good plans with ease.

* 6.7 EVOLUTIONARY CONSIDERATIONS

A primary consideration in our practical design of the OCAP is evo-

lution. If one or more of the three aids evolves or gets replaced by a

tool which performs similar functions, what will happen to the OCAP? We

have designed the system in such a way that the answer to this question

is that only minor modifications need be made.

The design of each of the interfaces to be outside of the specific

core aids was a direct result of this evolutionary consideration. The

*use of KNOBS constraint-checking mechanism is the only exception to all

*of the interfaces being external to the aids. This exception is not a
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problem because KNOBS successor, TEMPLAR, will also contain these

constraint-checking mechanisms. _. -O

Because of our involvement in TEMPLAR, we have explicitly con-

sidered it in our design of the OCAP. This consideration will allow for

ease in replacing KNOBS in the future.

Data base consistency is another issue that must be covered when

considering evolution. Again, our design of the OCAP architecture

explicitly allows for evolution of the data bases. The use of a Con-

sistency Manager, as discussed in Section 4, does not constrain the aids

or their data bases to be static.

0 In summary, the system design of the OCAP allows the core aids -

TPA, KNOBS, RPA - to improve or even to be replaced by tools which per-

form similar functions. Minor modifications to the interfaces will be

necessary, but the software of the aids need not be changed.
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